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Introduction 

The Van’t Hoff equation [1]: 
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is usually derived [2-6] by making use of the Van’t Hoff isotherm: 
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and the Gibbs-Helmholtz [7-9] equation: 
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Abstract  

An alternative formulation (named total entropy equation) of Van't Hoff's equation has been presented. An explanation of the 

effect of temperature on exothermic and endothermic processes is provided in terms of this alternative formulation. The 

treatment can be useful in directly highlighting the central role that the total entropy change plays in determining the direction 

of the process. As a chemical example the calculations of total entropy change are presented for the Haber-Bosch process. 

Finally, the correlation between Van't Hoff's equation and Total entropy equation is demonstrated by showing that it is 

possible to derive the former from the later and vice versa. 
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More specifically, to obtain equation (1) one substitutes equation (2) for ∆rG°
 
into the left-hand side of equation (3) and 

integrates. The Van’t Hoff equation is used to know the variation of an equilibrium constant K with temperature [2,3]. This 

effect of temperature on the equilibrium constant is usually understood through its effect on the standard Gibbs energy of 

reaction ∆rG° [10,11]. The standard state of a substance refers to 1 bar pressure. In other words, any change in K with T is 

perceived as a change in the value of the standard Gibbs energy of reaction ∆rG° [3]. Furthermore, the dependence of K on 

temperature is determined by the sign of ΔrH° and the Van’t Hoff equation provides the theoretical basis of this dependence 

[12]. Alternatively, the effect of temperature on equillibria has sometimes correctly, but only qualitatively, been explained in 

terms of the relative importance of the magnitudes of the entropy changes of the system and its immediate surroundings [2]. 

This is done by employing the following relation:  

(4)
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In order to provide a mathematical expression corresponding to this alternative explanation the Van’t Hoff equation may be 

formulated in terms of entropy. This we do in the following sections. The presented equation, it is hoped, is a useful 

expression that highlights in a more direct manner the role that total entropy change (System+Surroundings) plays in the 

process. 

 

The Equation 

If one multiplies both sides of equation (4) by the negative sign, one gets 
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If one identifies the first term on the right hand side of above equation with the entropy change of the surroundings [13]
 
and 

denotes it by /surS rH T    then, since total sys surS S S    , one finds [14]: 
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Here ∆S°total is the total entropy change that the reaction generates and T denotes the absolute temperature. ∆Stotal is 

sometimes also called ∆Suniverse or ∆Sisolated but we won’t use such designations here. For us the universe will consist of the 

system and its immediate surroundings as is usually the case in a typical chemistry laboratory. Although equation (5) does 

give some indication of the role that ∆S°total plays in determining the favourable path of a process, it is useful to appreciate 
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the role of ∆S°total fully. If instead of equation (2) one substitutes equation (5) into the left hand side of equation (3) one 

obtains: 
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Equation (6) can be directly integrated between the two specified temperatures Ti and Tf, say, to give the following general 

result: 
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Here Ti is the initial temperature while Tf is the final temperature. In order to carry out above integration further one must 

know how the enthalpy of the system varies with the temperature [15-18]. If one uses the approximation that the standard 

reaction enthalpy is independent of temperature, a valid approximation for at least small ranges of temperature [2], then 

equation (7) can be easily integrated to give the following special result: 
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Equations (7) and (8) represent an alternative formulation of Van't Hoff's equation in terms of entropy. 

 

Results and Discussion  

Equation (8) is an important result as it can be used to explain the behavior of exothermic and endothermic processes towards 

temperature directly. According to equation (8), for exothermic processes (the processes that are accompanied by the 

evolution of energy as heat as the reactants get converted to products) the increase of temperature leads to a net decrease in 

total entropy. Hence the equilibrium constant for an exothermic process decreases with increase of temperature as can be 

easily seen from a comparison of equations (2) and (5). On the other hand, a decrease in temperature leads to a net increase in 

total entropy and the equilibrium constant increases, also obvious from a comparison of (2) and (5). This must be so because 

∆rH
°
<0 for an exothermic system. Now if we apply equation (8) to endothermic processes (the processes that are 

accompanied by the absorption of energy as heat as the reactants get converted to products) we find that the increase of 

temperature leads to a net increase in total entropy. Hence for endothermic processes the equilibrium constant increases with 

increase in temperature. On the other hand decrease in temperature leads to a net decrease in total entropy and Keq decreases 

with a decrease in temperature, again obvious from a comparison of equations (2) and (5). This must be so because ∆ rH
°
>0 

for an endothermic system. 

 

An Application: The Haber-Bosch Process 

The Haber-Bosch process named after its inventors, the German chemists Fritz Haber and Carl Bosch, who developed it in 

the first half of the 20th century [19], is an artificial nitrogen fixation process and is the main industrial procedure for the 

https://en.wikipedia.org/wiki/Fritz_Haber
https://en.wikipedia.org/wiki/Carl_Bosch
https://en.wikipedia.org/wiki/Nitrogen_fixation
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production of ammonia today [20]. This important process consumes over one percent of humanity's energy production but is 

responsible for feeding roughly one-third of its population and has been of somewhat greater fundamental importance to the 

modern world than the invention of the airplane, nuclear energy, space flight, or television [21]. The Haber-Bosch process is 

an exothermic process that converts atmospheric nitrogen (N2) to ammonia (NH3) by reaction with hydrogen (H2) using a 

metal catalyst under high temperature and pressure and is usually depicted by the following chemical equation: 

 

                                                      N2 (g)+3H2 (g) ≡ 2NH3 (g) 

 

Now for the Haber-Bosch equilibrium process the value of ∆rH°=-92.2 KJmol
-1

 at 298 K and the value of Keq is then 6.1 × 

10
5
. Suppose the value of ∆rH° is independent of temperature up to about 500°C and the temperature is increased above room 

temperature in steps of 50°C. One can then calculate the variation of ∆S°total with temperature by using equation (8). These 

values of ∆S°total at different temperatures above room temperature [with ∆S°total=110.40 JK
-1

mol
-1

 at 298 K, available from 

the already existing chemical literature, for example see reference-2 or calculated by using equation (5)] are shown in table 

below. 

 

TABLE 1. Values of ∆S
° 
total at different temperatures for the Haber-Bosch process. 

 

    Temperature/K        298        348         398         448        498 

   ∆S°total/JK
-1

mol
-1

    110.40      65.95       32.67        6.28    -13.84 

 

As is clear from above TABLE 1, ∆S
°
total decreases as T increases for the above Haber-Bosch exothermic process. This 

means that the process becomes unfavourable at higher temperatures.   

                                                           

The Correlation between Van't Hoff Equation and Total Entropy Equation 

Now using equation (8) one can easily obtain the Van't Hoff equation or Van't Hoff's law. If one uses equation (5) one can 

also write (8) as 
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Now one substitutes equation (2) into equation (9) to get the desired result 
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Alternatively, if one takes equation (10) and works backwards by using equation (2) in it one gets the total entropy 

equation,equation (8). 

https://en.wikipedia.org/wiki/Ammonia
https://en.wikipedia.org/wiki/Nitrogen
https://en.wikipedia.org/wiki/Hydrogen
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Conclusion 

An alternative thermodynamic interpretation of the behavior of exothermic and endothermic processes towards temperature is 

in terms of the total entropy change that the process causes. It is possible to present a mathematical expression, named as the 

total entropy equation, underlying this explanation. The presented equation makes it very direct to appreciate the role of total 

entropy change in the processes. 
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