ISSN : 0974 - 7524

Volume 7 Issue 1

Trade Science Inc.

Physical CHEMISTRY

An Indian Journal

-Full Paper

PCAIJ, 7(1), 2012 [36-42]

Temperature and concentration dependence of refractive index of cholesteric liquid crystal solution

Anita Kanwar^{1*}, Priya S.Yadav²

¹Department of Physics, VES College of Arts, Science and Com, Sindhi Society, Chembur, Mumbai, Maharashtra, 400071, (INDIA)

> ²Atharva Engineering College, Malad (West) Mumbai, Maharashtra, (INDIA) E-Mail: anita_s_kanwar@yahoo.com Received: 9th November, 2011 ; Accepted: 9th December, 2011

ABSTRACT

Average refractive indices of Cholesteric liquid crystal (Cholesteryl pelargonate: CP) dissolved in a soluble solvent were measured at various temperatures and concentrations. Multi-wavelength (visible range) refractometer made using hollow prism is used in the measurement. Due to variation in extra-ordinary and ordinary refractive index average refractive index changes with temperature for various concentrations of the solution. The changes in average refractive index were investigated for three wavelengths: 404 nm, 546 nm and 578 nm. Results so obtained are presented in this paper and are in accordance with claim by Hecht in his book. © 2012 Trade Science Inc. - INDIA

INTRODUCTION

Cholesteric liquid crystals (CLC) are one-dimensional photonic crystals with refractive index that is regularly modulated along the helix axis because of the director changing in helical manner from one layer to the other. This also cuts off propagation of light for a particular range of wavelength^[1].

CLCs^[2, 3] are mesomorphic phase in which molecules are parallel to each other within the plane of a layer. It is a type of liquid crystal with a helical structure and which is therefore chiral. They organize in layers with no positional ordering within layers, but a director axis which varies with layers. The variation of the director axis tends to be periodic in nature. CLCs are temperature sensitive and have colour changing ability

at various temperatures. CLCs locally behave like uniaxial anisotropic media. The optical birefringence^[4,5], defined by $\Delta n = n_{e} - n_{o}$, can be easily controlled through the variation of the temperature. In the above, n represents the principal extraordinary refractive index, hence corresponding to a light beam polarization parallel to the optical axis, while n_o denotes the ordinary refractive index, associated with a light beam polarization orthogonal to the optical axis. Refractive index^[6-8] is one of the most important optical properties of a medium. It plays key role in many areas of materials science especially in thin film technology and fiber optics. The average refractive index <n> of liquid crystals (LC) is of fundamental interest for liquid crystal electro-optical devices. It is a continuous function of wavelength and varies with temperature and concentration.

KEYWORDS

Average refractive index; Cholesteric liquid crystal; Multi-wavelength refractometer; Extra-ordinary and ordinary refractive index.

Full Paper

EXPERIMENTAL METHOD

The refractive indices of CLC solution were investigated using multi-wavelength refractometer. This refractometer is designed using a hollow prism and an ordinary spectrometer^[9]. The sample is prepared by dissolving required quantity of CP ($C_{36}H_{62}O_2$) in toluene to get one to six molar solutions. Each solution is stirred continuously and then heated to form isotropic solution. The required solution is then filled in the hollow prism for measurement. Minimum deviation angles for various colours of mercury source are measured^[10, 11]. Refractive indices are calculated using the Formula

$$\mu = \frac{\sin\left(\frac{A + \partial m}{2}\right)}{\sin\left(\frac{A}{2}\right)}$$

Refractive index measurements correct up to four and five decimal places are common using this technique with good control of the sample temperature. To identify ordinary and extra ordinary spectrum polarizer was used. Temperature variation is obtained using indigenously designed heating coil and thermometer. The same procedure is repeated for different concentrations of the mixture. For each concentration readings are taken by varying the temperature for different concentration solution.

Figure 1 : variation in (n) for three different wavelengths (colour) with concentration of the solution.

TABLE 1 : Effect of variation in concentration obtained atroom temperature of 30°C

Colour	Wavelength (nm)	n _e	no	(n)	
For or	ne molar (1M) solut	ion at roon	n temperat	ure:-	
Violet	404	1.54408	1.5259	1.5320	
Green	546	1.5299	1.5100	1.5166	
Yellow	578	1.5219	1.5065	1.5116	
For tw	vo molar (2M) solut	ion at roon	n temperat	ture:-	
Violet	404	1.51892	1.50084	1.5069	
Green	546	1.50865	1.48551	1.4932	
Yellow	578	1.507	1.48014	1.4891	
For the	ree molar (3M) solu	tion at roo	m tempera	ture:-	
Violet	404	1.515794	1.498008	1.5039	
Green	546	1.507419	1.47936	1.4887	
Yellow	578	1.506649	1.482586	1.4906	
For Fo	ur molar (4M) solu	tion at roo	m tempera	ture:-	
Violet	404	1.50251	1.47568	1.4846	
Green	546	1.49685	1.46625	1.4765	
Yellow	578	1.48658	1.45382	1.4647	
For five	ve molar (5M) solut	ion at roon	n temperat	ture:-	
Violet	404	1.51788	1.499837	1.5059	
Green	546	1.501326	1.476618	1.4849	
Yellow	578	1.4977	1.467064	1.4773	
For si	x molar (6M) soluti	on at roon	n temperat	ure:-	
Violet	404	1.52343	1.5113	1.5153	
Green	546	1.51186	1.48453	1.4936	
Yellow	578	1.50321	1.47654	1.4854	

*'M' stands for molar concentration

OBSERVATIONS

First part of the experiment deals with measurements for various concentration of the solution. TABLE 1 shows how average refractive index^[12] changes with the concentration of the CP in the solution. Average refractive indices ((*n*)) are obtained from the Vuks equation (*n*)=(n_e +2 n_0)/3. Figure 1 shows the variation in average refractive index for three different wavelengths (colour) with concentration of the solution.

TABLE 2 to TABLE 6 show how extra ordinary, ordinary and average refractive indices change with the temperature for various concentration. Variation in the refractive indices is obtained for three different wavelengths. Figure 2 to Figure 6 show graphical representation of the variation.

Full Paper

TABLE 2 : Shows variation of n_e , n_o and (n) with the temperature for 1M concentrations.

Temp. (°C)	Violet (404nm)			Green (546nm)			Yellow (578nm)		
	n _e	no	<n></n>	n _e	no	<n></n>	n _e	no	<n></n>
70	1.5156	1.4726	1.4869	1.5037	1.4577	1.4730	1.501	1.4547	1.4701
60	1.5151	1.4767	1.4895	1.5061	1.4705	1.4824	1.5046	1.4632	1.477
50	1.5186	1.4861	1.4969	1.5044	1.4714	1.4824	1.5025	1.4684	1.4798
40	1.5188	1.4916	1.5007	1.5033	1.4775	1.4861	1.5018	1.4735	1.4829
30	1.5188	1.5027	1.5081	1.5013	1.4853	1.4906	1.5084	1.4834	1.4917

TABLE 3 : Shows variation of n_e , n_o and (n) with the temperature for 2M concentrations.

Temp. (°C)	Violet (404nm)			Green (546nm)			Yellow (578nm)		
	n _e	no	<n></n>	n _e	no	<n></n>	n _e	no	<n></n>
70	1.5137	1.4715	1.4856	1.5059	1.4627	1.4771	1.5045	1.4616	1.4759
60	1.512	1.4786	1.4897	1.5059	1.4725	1.4836	1.5017	1.4686	1.4796
50	1.5132	1.4873	1.4959	1.5008	1.4676	1.4787	1.4969	1.4656	1.4760
40	1.5134	1.4893	1.4973	1.5085	1.4766	1.4872	1.5028	1.4745	1.4839
30	1.5131	1.494	1.5004	1.5067	1.4774	1.4872	1.5019	1.4765	1.4850

TABLE 4 : Shows variation of n_e , n_o and (n) with the temperature for 3M concentrations.

Violet (404nm)			Green (546nm)			Yellow (578nm)		
n _e	no	<n></n>	n _e	no	<n></n>	n _e	no	<n></n>
1.5222	1.4828	1.4959	1.5164	1.4663	1.4830	1.5012	1.4632	1.4759
1.5187	1.4934	1.5018	1.5094	1.4733	1.4853	1.5002	1.4655	1.4771
1.5165	1.494	1.5015	1.5074	1.4769	1.4871	1.5069	1.474	1.4850
1.5145	1.4924	1.4998	1.4993	1.4696	1.4795	1.4905	1.4607	1.4706
1.5157	1.498	1.5039	1.5074	1.4793	1.4887	1.5066	1.4825	1.4905
	Vi n _e 1.5222 1.5187 1.5165 1.5145 1.5157	Violet (404nm ne no 1.5222 1.4828 1.5187 1.4934 1.5165 1.494 1.5145 1.4924 1.5157 1.498	Violet (404nm) ne no <n> 1.5222 1.4828 1.4959 1.5187 1.4934 1.5018 1.5165 1.494 1.5015 1.5145 1.4924 1.4998 1.5157 1.498 1.5039</n>	Violet (404nm) G ne no Ne 1.5222 1.4828 1.4959 1.5164 1.5187 1.4934 1.5018 1.5094 1.5165 1.494 1.5015 1.5074 1.5145 1.4924 1.4998 1.4993 1.5157 1.498 1.5039 1.5074	Violet (404nm) Green (546m) ne no ne no 1.5222 1.4828 1.4959 1.5164 1.4663 1.5187 1.4934 1.5018 1.5094 1.4733 1.5165 1.494 1.5015 1.5074 1.4769 1.5145 1.4924 1.4998 1.4993 1.4696 1.5157 1.498 1.5039 1.5074 1.4793	Violet (404nm) Green (546nm) ne no <n> 1.5222 1.4828 1.4959 1.5164 1.4663 1.4830 1.5187 1.4934 1.5018 1.5094 1.4733 1.4853 1.5165 1.494 1.5015 1.5074 1.4769 1.4871 1.5145 1.4924 1.4998 1.4993 1.4696 1.4795 1.5157 1.498 1.5039 1.5074 1.4793 1.4887</n>	Green (546nm)Ye n_e n_o $$ n_e n_o $$ n_e 1.52221.48281.49591.51641.46631.48301.50121.51871.49341.50181.50941.47331.48531.50021.51651.4941.50151.50741.47691.48711.50691.51451.49241.49981.49931.46961.47951.49051.51571.4981.50391.50741.47931.48871.5066	Violet (404nm) Green (546nm) Yellow (578n) ne no No No No No No No No No No

TABLE 5 : Shows variation of n_e , n_o and (n) with the temperature for 4M concentrations.

Temp. (°C)	Violet (404nm)			Green (546nm)			Yellow (578nm)		
	n _e	no	<n></n>	n _e	no	<n></n>	n _e	no	<n></n>
70	1.5189	1.477	1.4910	1.5128	1.4667	1.4821	1.4988	1.4567	1.4707
60	1.5143	1.4751	1.4882	1.499	1.4643	1.4759	1.4932	1.4553	1.4679
50	1.5135	1.4748	1.4877	1.4987	1.4641	1.4756	1.4921	1.4542	1.4668
40	1.5036	1.4751	1.4846	1.4987	1.4671	1.4776	1.4892	1.4545	1.4661
30	1.5025	1.4757	1.4846	1.4969	1.4662	1.4764	1.4866	1.4538	1.4647

TABLE 6 : Shows variation of n_e, n_o and (n) with the temperature for 5M concentrations

Temp. (°C)	Violet (404nm)			Green (546nm)			Yellow (578nm)		
	n _e	no	<n></n>	n _e	no	<n></n>	n _e	no	<n></n>
70	1.518	1.4745	1.4890	1.5104	1.4667	1.4813	1.5007	1.4567	1.4714
60	1.5154	1.4741	1.4879	1.5003	1.4617	1.4746	1.4965	1.4598	1.4720
50	1.5189	1.4839	1.4956	1.5118	1.475	1.4873	1.5075	1.4759	1.4864
40	1.5128	1.491	1.4983	1.5058	1.4775	1.4869	1.4989	1.4679	1.4782
30	1.5179	1.4998	1.5058	1.5013	1.4766	1.4848	1.4977	1.4671	1.4773

Figure 2 : a) Temperature variation of n_e , n_o and (n) for violet (404nm); b) Temperature variation of n_e , n_o and (n) for green (546nm); c) Temperature variation of n_e , n_o and (n) for yellow (578nm).

Figure 3 : a) Temperature variation of n_e , n_o and (*n*) for violet (404nm); b) Temperature variation of n_e , n_o and (*n*) for green (546nm); c) Temperature variation of n_e , n_o and (*n*) for yellow (578nm).

Figure 4 : a) Temperature variation of n_e , n_o and (n) for violet (404nm); b) Temperature variation of n_e , n_o and (n) for green (546nm); c) Temperature variation of n_e , n_o and (n) for yellow (578nm).

Figure 5 : a) Temperature variation of n_e , n_o and (n) for violet (404nm); b) Temperature variation of n_e , n_o and (n) for green (546nm); c) Temperature variation of n_e , n_o and (n) for yellow (578nm).

Figure 6 : a) Temperature variation of n_e , n_o and (n) for violet (404nm); b) Temperature variation of n_e , n_o and (n) for green (546nm); c) Temperature variation of n_a , n_o and (n) for yellow (578nm).

RESULT AND CONCLUSION

Here we have observed that the refractive index of extra ordinary and ordinary spectrum decreases as the concentration increases up-to 4 Molar concentration. Thereafter it shows increase. This happens due to changes in the molecular arrangement of the cholesteric in the solution^[13]. For each concentration the refractive index of extra ordinary spectrum is greater than the ordinary spectrum indicating positive birefringence.

In the second experiment we observe that for each concentration as temperature increases the refractive index for extra ordinary spectrum and ordinary spectrum changes indicating changes in birefringence. It is interesting to see that as the average refractive index decreases with increasing temperature as specified by the Halller approximation and Vuks equation for refractive indices of liquid crystals.

REFERENCES

- [1] M.Mitov, E Nouvet, N.Dessaud; Eur.Phys.J.E., 15, 413-419 (2004).
- [2] P.J.Collins; Liquid Crystals, Natures Delicate Phase of Matter, IOP Publishing, New Jersey, (1990).
- [3] P.G.De Gennes; The Physics of Liquid Crystals, Calrendon Press, Oxford, (1974).
- [4] Journal of Optoelectronics and Advanced Materials, 8(1), 295-298 (2006).
- [5] International Journal of Physical Sciences, 1(3), 147-153 (2006).

Full Paper

- [6] G.Sureshchandra et.al.; Mol.Cryst.Liq.Cryst., **511**, 75[1545]-84[1554] (**2009**).
- [7] J.R.D.Pereira, A.M.Mansanares, A.J.Palangana, M.L.Baesso, A.A.Barbosa, P.R.G.Fernandes; Physical Review E., 64, 062701 (2001).
- [8] Ki Cheol Yoon, Hunkyun Pak, Sung Tae Kim, Jae Chul Jung, Hyun Duk Park; Journal of the Korean Physical Society, **49(1)**, (**2006**).
- [9] Shyam Singh; Physica Scripta., 65, 167-180 (2002).

- [10] R.Gupta, J.H.Burnett, U.Griesmann, M.Walhout; Appl.Opt., **37**, 5964 (**1998**).
- [11] J.H.Burnett, R.Guta, U.Griesmann; Appl.Opt., 41, 2508 (2002).
- [12] S.Datta Sarkar, B.Choudhury; ACTA Physica Polonica.A., 4, 118 (2010).
- [13] Anita Kanwar, Sureshchandra J.Gupta, Sanjay Patil, Gowher B.Vakil; Journal of Optics., 37(1), 09-15 (2008).

Physical CHEMISTRY Au Indian Journal