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Abstract : In the present investigation the expres-
sions of the superconducting order parameter and car-
rier density using extended Hubbard model under U

limit within the framework of Hubbard projection op-
erator and ortho-fermions formalism have been derived.
The present study shows that the next-nearest-neighbor
hopping and inter-site interaction play an important role

INTRODUCTION

On the basis of the planer electronic structure of
cuprate superconductors Anderson[1] predicted that
model fulfilling the electronic structure and strong cor-
relation effects that exist in high-T

c
 cuprates is the two-

dimensional Hubbard model[2]. It was further empha-
sized that to formulate a microscopic model of cuprates
one has to take into account the orbital structure in the
conducting CuO

2
 planes, the main building blocks of

cuprates and strong electron correlation effects as well.

Mainly, one has to concentrate on the orbitals ,Cu3d 2y2x 

yx O2P and2P O  in the CuO
2
 plane of cuprates subject

to hybridization and formation of as in plane band.
The recent photoemission experiments also sug-

gested that there is a significant contribution coming out

of next-nearest neighbour hopping energy as well as
inter-site Coulomb interaction, due to existence of the
long-range Coulomb correlations in these materials. The
magnitude of Coulomb interaction at Cu 3d9 site is very
large (of the order of 8-10 eV) in cuprates, in compari-
son with kinetic energy. In the light of the above facts
the researcher working on the theoretical aspects of
normal as well as superconducting state properties em-
ployed extended Hubbard model with nearest-neigh-
bor and next-nearest-neighbor interactions and hop-
ping energies.

Therefore during the last few years the Hubbard
model containing nearest neighbor (N-N) and next-near-
est-neighbor (N-N-N) interactions and hopping terms
has been extensively studied[3-11] and within this model
the emergence of superconductivity has been rigorously
demonstrated under some conditions in these materi-
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als. Though, the exact solutions of Hubbard model have
been reported for the only one-dimensional version of
Hubbard model by Lieb and Wu[12] and as well as
Muller-Hartman[13] and within the infinite dimensional
limit by Kotliar and Ruckenstein[14]. In general for two
and three-dimensional extended Hubbard model, which
is relevant to high-T

c
 superconductivity in cuprates and

strongly correlated electronic systems, there is so far,
no satisfactory and mathematically tractable theoretical
approach for realistic values of the electronic band-
structure parameters in cuprates. Therefore, to study
the Hubbard model, many approximate solutions and
methods have been proposed[2,15,16]. There have also
been several numerical simulations for finite system
within the framework of Hubbard model[17] and its ex-
tensions.

For the system like cuprates in which intra-atomic
interaction U is very large (10 eV), the calculation
under U   limit have also been attempted. Initially,
Balserio and Foglio[18] have considered the model in
which attractive inter-site interaction arises from the
highly correlated electronic structure of the supercon-
ducting ceramic. They studied the Hubbard model in
the limit of infinite Coulomb repulsion (i.e. U  ) by
employing standard decoupling techniques within the
framework of Green�s function formalism. They have

derived the expressions of transition temperature T
c
 and

the superconducting energy gap as a function of the
various parameters of the model in superconducting
state. Hirsch and Marsiglio[8] shown that superconduc-
tivity in these materials exists even in the presence of
large Coulomb repulsion and transition temperature (T

c
)

increases with the hopping amplitude. They have dis-
cussed the various properties like tunneling density of
states, specific heat, gap ratio and short coherence
length as a function of hole density and various param-
eters of the Hamiltonian. Zhou et al.[19] have presented
a mean-field calculation of the two-dimensional single-
band Hubbard model based on Mori-projection op-
erator formalism and calculated the various physical
properties including the energy gap, effective hopping
matrix element, local moment and fermi surface. They
have also compared the results with those of the
Hubbard-I approximation. Boer et al.[20] have also
considered the extended Hubbard model and have
shown that large class of these models has a super-

conducting ground state. They also studied the com-
plete phase diagram of cuprates and concluded that the
ground state of these systems is highly degenerate as is
known for the U Hubbard model. Nazarenko et
al.[21] have considered a two-dimensional fermionic
model with attractive interaction for the underdoped
high-T

c
 cuprates. They found that the exact solution leads

to a two particle bound state in the 2y2x
d


 subspace.

They have also calculated the carrier density (holes)
dependence of the transition temperature and suggested
that the transition temperature increases with increase
in carrier density but after a particular density, further
increase in carrier density decreases the critical tem-
perature. Harris et al.[22] on the basis of the angle-re-
solved photoemission spectroscopic measurements of
the excitation gap in underdoped superconducting thin
film of Bi

2
Sr

2
Ca

1-x
Dy

x
Cu

2
O

8+
 concluded that the tran-

sition temperature is reduced substantially on decreas-
ing carrier concentration, while the decrease in the su-
perconducting energy gap is very slow, which points
towards a violation of the BCS mean-field results.
Marsiglio[23] has considered the attractive Hubbard
model in one-dimension and calculated the ground-state
energy and energy gap in the first excited state using
both, the Bethe-Ansatz equation and the variational
BCS wave function approach. He found that the ground-
state energies are always in very good agreement with
experiment. Later, Maska[24] on the basis of the infi-
nite-U Hubbard model calculated the electronic self-
energy by projecting out the doubly occupied sites.
Szabo and Gulacsi[25] have analysed the superconduct-
ing phase diagram of the extended Hubbard model
supplemented with inter-site interaction and the next-
nearest-neighbour hopping term in a mean-field approxi-
mation. They have emphasized the importance of dif-
ferent superconducting gap symmetries in the super-
conducting state and concluded that the thermodynamic
properties are strongly influenced by next-nearest-
neighbour contributions.

Therefore, most of the theoretical investigations at-
tempted so far on the superconductivity in cuprates are
within the extended Hubbard model[18-25] as mentioned
above (with on-site and inter-site interactions). Some
of the authors have considered both these interactions
repulsive while some other have taken inter-site inter-
action attractive and on-site interaction repulsive in one-
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band and two-band Hubbard like models within mean-
field as well as beyond mean-field approximations. The
2D-strongly interacting systems like cuprates in the limit
U   have also been studied using Hubbard projec-
tion operator formalism to avoid double occupancy
because under this limit there may be only one particle
either of spin up or of spin down in any orbital state. As
in cuprates, there exist very strong on-site Coulomb
correlations in the superconducting state as well, there-
fore, to study the superconductivity in high-T

c
 cuprates

one has to take care of these strong electron correla-
tion effects. To take care of strong correlation effects
Mishra and Rajasekaran[26] have constructed the alge-
bra of the creation and destruction operators for spin
½ particles obeying a new exclusion principle which is

modified Pauli�s exclusion principle. If the on-site Cou-

lomb interaction becomes very large, virtually U

limit may be applied as in cuprates, then an orbital state
shall not contain more than one particle (whether spin
up or spin down). These authors have also discussed
the applicability of this ortho-Fermions algebra for infi-
nite U-Hubbard model and emphasized its applicability
for strongly correlated electronic systems like high-T

c

cuprates. Recently, Mishra[27] have also demonstrated
the two-main methods the Gutzwiller projection tech-
nique and the Nested-Bethe ansatz, to handle the elec-
tronic systems with very large electronic correlations.
He concluded that in U limit the Bethe-ansatz so-
lution leads to decoupling between the spin and charge
degrees of freedom. Whereas in the Gutzwiller ap-
proach, the usual antisymmetry of space and spin co-
ordinates is maintained.

More recently, Kishore and Mishra[28] studied the
thermodynamics of infinite U Hubbard model within
ortho-Fermions statistics (i.e. Fermions with infinitely
large Coulomb interaction). They have shown that at
least in one-dimension the fermions with exclusion of
double occupancy of particles behave as free ortho-
Fermions. They have further emphasized to extend these
one dimensional result of infinite U Hubbard model to
ascertain the accuracy of existing approximate solution
of the Hubbard model for higher dimensions applicable
for the strongly correlated electron system like high-T

c

cuprate superconductors.
Thus, in the light of above facts the aim of the present

paper is to study the superconducting state in high-T
c

cuprate superconductors by considering an extended
Hubbard model Hamiltonian with U   limit within
Hubbard projection operator formalism as well as the
ortho-Fermions quantum approach and obtain the ex-
pressions of superconducting order parameter and car-
rier density as a function of various parameters of the
model Hamiltonian.

THEORETICAL FORMULATION

Superconductivity in the extended Hubbard model
in U limit (Hubbard projection operator for-
malism)

The electronic structure of CuO
2
 planes, the ba-

sic building blocks of high temperature cuprate super-
conductors, can be described well within the frame-
work of tight-binding Hubbard Hamiltonian[6,7]. Fur-
ther, it has been pointed out that in cuprates there are
strong electron correlations at Cu 3d9 site even in the
superconducting state. Besides this the electronic band
structure and core level photoemission experiments
also predict a significant contribution of next-nearest-
neighbour hopping energy and inter-site Coulomb in-
teraction[25] in these materials even in the supercon-
ducting state. Thus, to study the superconductivity in
cuprates we will consider the extended Hubbard model
with attractive inter-site interaction. The model Hamil-
tonian may be given as:


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(1)

where, V
ij
 is an attractive nearest neighbour inter-site

interaction, and we have not gone to discuss about the
origin of this attraction, t

ij
 is the nearest-neighbour hop-

ping energy, t�
ij�
 is the next-nearest-neighbour hopping

energy, U is the on-site Coulomb interaction,  is the
chemical potential of the system.

In cuprates the on-site Coulomb interaction U is
very large in comparison with the hopping energy and
inter-site interaction, therefore, virtually U   limit
may be an approximate starting point. Under this limit
we will eliminate doubly occupied sites and left with the
singly occupied lower band. Because of the exclusion
of doubly occupied states, the on-site Coulomb inter-
action serve to reduce the phase space available to the
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electronic system. In order to formulate this effect (U
 ), we use the algebra of the projection operators
which will avoid double occupancy of the states.

Let 
ka  and 

ka  be the projection operators corre-

sponding to the operators 
kC  and 

kC . It can be

shown[29] that the operators 
ka  and 

ka  satisfy the such
algebraic relations so that only single occupied site are
taken care of as:

 


 iii Cn1a (2a)

      k'knk'kna,a '''kkk ''k






  (2b)

In the absence of long range magnetic order these
Hubbard projection operators satisfy the following sim-
plified anti-commutation relation as:

    'kk'k n1a,a
''k






 
(2c)

    0a,aa,a
''kk''kk  

  (2d)

Thus, in U   limit (the doubly occupied sites are
excluded) the Hamiltonian given by equation (1) trans-
formed to:













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

'ij
'j'jiiij

'ij
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iij aaaaV

2

1
aa'taa)t(

~
H (3)

The above Hamiltonian (3) can be written in the
momentum space by performing usual Fourier trans-
formation as:

'q'k''k
q'kk

,qkkk
k

kk aaaa
N2

V
aa)(

~

'















 


H
(4)

Now the Hamiltonian given by equation (4) may be
linearize within BCS mean field approach as:

 







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


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k
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k
kk aaaa

2
1
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(5)

where,

  


n1
2
V~

kk ,

  yxyxk kCoskCos't4kCoskCost2  ,












 kk
k

* aa
N
V

, 




 kk
k

aa
N
V

(6)

Where *
  is the superconducting order parameter..

Now, in our present analysis within Hubbard pro-
jection operator formalism, to obtain the self-consis-
tent expressions for superconducting order parameter
and carrier density as a function of various parameters

of the model Hamiltonian, we apply the Green�s function

equation of motion technique[30] and drive the equation

of motion for Greenn�s function 







 kk aa),k(G

as:

   










 


 kkkk aH
~

,aa,a
2
1

),k(G (7)

We obtain  H
~

,a k
 within Hubbard projection op-

erators for Hamiltonian (5) and finally obtain:

     


 
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2

1
),k(G k

  




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 kkk aan1 (8)

In Equation (8) there is one additional Green�s func-

tion 





 kk aa , now we define this Green�s function

as:






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
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
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
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~
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2
1

(9)

and finally obtain the following equation:

 
  k

*
k

kk ~n1

),k(Gn1
aa
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
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Substituting Equation (10) into (9) we get:
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 
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2
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2
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n1

2
1
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
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Substituting:   knk
~~n1 


 and

  kk

~
n1 


 into Equation (11) we have:
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 
2
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2
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2
1
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Which we can rearranged in the following form:

   
   knkn
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~n1
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1
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where,  
2

k

2

knkn

~~E 

From Equation (13) using the standard procedure
for correlation function[30] the distribution of the charge
carriers may be obtained as:

  











 
   Tk2

E
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2
1

n
B

kn

kn

kn

k
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Substituting (13) into (10) we can also have:
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 
   knkn
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kk EE
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2
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
 









 (15)

From Equation (15) the superconducting order pa-
rameter may be obtained in a straight forward way as:

  















Tk2

E
tanh

E2

~
n1V

B

kn

kn

*
k

k

*

(16)

From Equations (14) and (16), we study the su-
perconducting order parameter as a function of inter-
site interaction, carrier concentration, hopping param-
eter as well as temperatures in high-T

c
 cuprates. Eq.

(16) is just the modified BCS-superconducting order
parameter form. A close examination of equation (14)
and (16) reveal that these are coupled integral equa-
tions and required a self-consistent numerical compu-
tation.

The Superconductivity in extended Hubbard model
in the limit U: (ortho-Fermions approach)

As pointed out in the introduction the Hubbard
model and its various extensions are suitable for the
study of superconductivity in high-T

c
 cuprates In the

high-T
c
 cuprates the on-site Coulomb interaction is found

to be very large as compared to other parameters. Thus,
under such situation U  limit may be applicable in
cuprates which impose the condition that no two holes
can reside on the same site. Therefore, in the limit of
U the Pauli�s exclusion principle, will be modified,

according to which, �two electrons having opposite spin

can occupy the same orbital state� and mathematically

expressed as:

0aa ii 








where,  or .
Recently, for the systems like the high temperature

cuprates where the limit U is justified, a new exclu-
sion principle applicable for U limit case was de-
veloped by Mishra and Rajasekaran[26]. According to
which �an orbital state should not contain more than

even one particle, whether spin up or down� and math-

ematically given as:

0aa ii 








where,  or,

Mishra and Rajasekaran[26] also developed the al-
gebra for such Fermionic system and named as ortho-
Fermion which satisfies the following anti-commutation

relations:

0aaaa ijji 
 (17a)























  ijijji aaaa (17b)

where, ,  and  will be  (up spin)   (down spin)
and represent a modified Pauli�s exclusion principle.

These anti-commutation relations show that in the
ortho-Fermions statistics there can be only exchange
of particle sites and the spin degree�s of freedom get

frozen. So while applying this ortho-Fermion approach
for strongly correlated electronic systems one has to be
careful about this fact during the decoupling approxi-
mations used.

Now in our present analysis, within the framework
of ortho-Fermions approach in U  limit we obtain
the self-consistent expressions for superconducting or-
der parameter and carrier density as a function of vari-
ous parameters of the model Hamiltonian given by equa-
tion (1). We apply the Green�s function equation of

motion technique for the Green�s function <<

C
k

|C+
k

>> as:

    














 kkkkkk cH

~
,cc,c

2
1

cc (18)

Where H
~  is the fourier transformed Hamiltonian of

equation (1).

To solve the Equation (18) we find  H
~

,cK
. Dur--

ing the calculation to decouple the higher order Green�s
function terms we have used the following rules Mishra
and Rajasekaran[26]:
(i) From the given string of the operators product ex-

pression, we form all compact anti-normal pairs.
The compact anti-normal pair (CAP) is defined to
be an anti-normal pair between a

m
 and a+

n
 such that

no unpaired a or a+ appears between a
m
 and a+

n
.

We denote CAP by the symbol  e.g.

 

(ii) If the spin on the a and a+ appearing in any of the
CAP are not matched the given string of the opera-
tors product vanishes and so does its normal prod-

uct e.g. 



.66

Original Article
ChemXpress 6(2), 2014

We solve  H
~

,c k
 within ortho-Fermions algebra

using normal product rules as above for Hamiltonian
given by Equation (1) and finally obtained the equation
of motion as:






 kk cc   





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2
1


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 kk cc

2
V

N2
V



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




k1q'kqk1'k
q'k

cccc

1


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




 k1q1kqk11k
q1k

cccc
N2

V

1

(19)

We linearize the higher order Green�s functions in

Equation (19) in to lower one by retaining desired cor-
relations important in the superconducting phase, and
finally obtained:

 
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2
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where,

  
kkk n1

2
V~  and 





 kk
k

aa
N
V

(21)

In Equation (20) there is one additional Green�s

function 





 kk cc . Now we define this Green�s func-

tion as:

    


























 kkkkkk cH,cc,c

2
1

cc (22)

and following the earlier procedure finally obtain the
equation of motion as:

),k(Gcc~cc *
kkkkkk 















 (23)

where,











 kk
k

* cc
N
V

(24)

Substituting the value of 





 kk cc  from Equation

(23) to (20) the final expression for 
 ),k(G



 kk cc , Green�s function comes out as:

  
  kk

kk

EE

~n1

2
1

),k(G





 

(25)

where,

2

k
2
kk

~E  (26)

From Equation (25) on applying the standard pro-
cedure the distribution of the charge carriers may be
given as:

  











 
   Tk2

E
tanh

E

~
1n1

2
1

n
B

k

k

k

k
(27)

Again to find the expression for superconducting
order parameter we solve Equations (23) and (25) to

obtain 





 kk cc  as:

 
)E)(E(

n1

2
cc

kk

k
*
K

kk







 





 (28)

From the Green�s function given by above Equa-

tion (28) using the standard procedure we calculated
the superconducting order parameter as:

  















Tk2

E
tanh

E2
n1V

B

k

k

*
k

k

*

(29)

From Equation (27) and (29) one can study the
superconducting order parameter as a function of in-
ter-site interaction, carrier concentration, as well as tem-
peratures in high-T

c
 cuprates. A close examination of

Equation (27) and (29) reveal that these are coupled
integral equation and require a self-consistent numeri-
cal computation.

RESULT AND DISCUSSION

We have derived the expressions of the supercon-
ducting order parameter and carrier density using ex-
tended Hubbard model under U limit within the
framework of Hubbard projection operator and ortho-
fermions formalism. The expression of superconduct-
ing order parameter given by Equation (16), just have
the BCS form but it depend on carrier concentration,
inter-site interaction energy and temperature as well. It
can be seen from this equation that at exact half-filling
i.e. (<n


>=1), the superconductivity vanishes (i.e.

0). This is in accordance with the observed ex-
perimental facts where in the absence of doping (there
is one particular site), the cuprates behave as insulator
due to very strong electron co-relation at Cu 3d9 site.
Now to study the superconducting order parameter as
a function of temperature we solve Equation (16) self-



67

Original Article
ChemXpress 6(2), 2014

consistently, numerically, by extending the summation
over k-values into an integration. During the numerical
calculation we have considered 

k
 = 

0
 (Cos k

x
 � Cos

k
y
), i.e. d-wave symmetry in the superconducting or-

der parameter as suggested by several workers[31,32].
In Figure 1, we have plotted superconducting or-

der parameter () vs. temperature for different values
of hole concentration, keeping t = 350 meV, t� = 30

meV and V = 4325 meV, fixed. It is clear from the
Figure 1, that initially the  and hence the transition
temperature (T

c
) increases on increasing hole concen-

tration (n=0.15�0.18). But, for the further increase in

hole concentration (n = 0.19), away from optimal dop-
ing, the transition temperature again starts decreasing.
This is in accord with the experimental and the theoreti-

cal results of the Balserio and Foglio[18] and de Mello
et al.[10] for the extended Hubbard model with an at-
tractive inter-site interaction.

In Figure 2, we have plotted superconducting or-
der parameter () vs. temperature, for different values
of the attractive inter-site interaction (V), keeping t =
355 meV, t� = 30 meV and n = 0.2 fixed. It is clear

from Figure 2, that on increasing the inter-site interac-
tion the transition temperature increases. This is in ac-
cordance with the results of Balserio and Foglio[18] as
well as experimental observations in these systems.

In Figure 3, we have plotted the BCS ratio (2
0
/

k
B
T

c
) vs. hole concentration around optimal doped re-

gime in cuprates, keeping t = 350 meV, t� = 30 meV

and V = 4325 meV, fixed. It is clear from Figure 3, that

Figure 1 : The variation of vs. T with (a) n=0.15 (cross), (b) n=0.16 (circle), (c) n=0.19 (triangle), (d) n=0.18 (square), (e)
n=0.17 (star). The other parameters are t=350 meV, t=30 meV and V=4325 meV.

Figure 2 : The variation of  vs. T with (a) V=4475 meV (cross), (b) V=4500 meV (circle), (c) V=4525 meV (triangle). The
other parameters are t=355 meV, t=30 meV and n=0.2.
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in the optimal doped region, the ratio (2
0
/k

B
T

c
) comes

out to be very close to the BCS ratio (3.52) but in the
under-doped and over-doped regime the ratio (2

0
/

k
B
T

c
) deviates from the BCS ratio, in strongly corre-

lated high-T
c
 cuprates. These results are in accordance

with the results obtained by Szabo and Gulasci[25] for
extended Hubbard model.

In the section 2.2 we have derived the expressions
of the superconducting order parameter and carrier den-
sity using extended Hubbard model with in the frame-
work of ortho-Fermions approach. The expression of
superconducting order parameter in ortho-Fermions
approach Equation (29) resembles with the expression
of superconducting order parameter obtained in
Hubbard projection operator formalism Equation (16).
At T = 0°K, these two results just become identical.

While in these two approaches, the temperature de-
pendence of the superconducting order parameter is
quite different. This is because in Hubbard projection
operator formalism we consider the Fermions distribu-
tion and then project out the doubly occupied sites while
in ortho-Fermions approach the doubly occupied sites
are eliminated using new anti-commutation relations by
modified exclusion principle which are much more mi-
croscopic.

Finally, it can be concluded that next-nearest-
neighbour hopping and inter-site interaction play an
important role in the superconducting state of high-T

c

cuprates in which, there exists strong electronic corre-
lations and virtually U limit is justified.

Figure 3 : The variation of 2
0
/k

B
T

c
. The other parameters are t=350 meV, t=30 meV and V = 4325 meV.
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