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ABSTRACT

In this paper, two additional componentswere required in order to test the
TMS. The first component was a behavior model that would provide the
simulated reports and observations on the performance of DCE members.
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The second component was a set of policiesthat the TM S used to protect
itself from abuses commonly used agai nst reputation-based systems. The
combination of thesetwo items allowed usto examine the response of the
TMSto avariety of simulated network and behavior conditions.
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INTRODUCTION

Designing theTM S (Trust Management System)
was only thefirst step on the road to establishing the
TMSasaviableaccess control mechanism. Two addi-
tional componentswererequired in order to test the
TMS. Thefirst component was abehavior model that
would providethe simulated reportsand observations
ontheperformanceof DCE members. Thesecond com-
ponent wasaset of policiesthat the TM Sused to pro-
tect itself from abuses commonly used against reputa-
tion-based systems. Thecombination of thesetwoitems
allowed usto examinetheresponse of theTMSto a
variety of smulaed network and behavior conditions.

BEHAVIOR MODELING

Thefirst stepto simulatingthe TM Swasto create
amode of how network membersbehaved. Themodd
needed to first determine what the member’s actual
behavior was. Membersweredivided into threebroad

behavior types. Good, Selfish, and Bad. Becausethe
system operated on the observation and reporting of
behavior, thesmulation then had to determine how that
behavior would be reported based on the observer’s
behavior type.

Giventhat people’sbasicinclinationwasto exhibit
stablebehaviora patterns, afinite state machinewas
congtructed tomodel amember’sbehavior. Inour model
we emphasi zed the statesrather thanthetransitionsor
stimuli, asour interest lay inthebehavior exhibited dur-
ing the staterather thaninthesignificance of the state
trangtion. Usersstarted their behavior modd inanini-
tial or “natura” state. Behavior was based onthe state
that amember occupied at thetime of making the ob-
servation. Thismodd, showninFigurel, emphasized
the probability that amember would changetheir be-
havior. Stable behavior types, such asthe Good or Bad
type, would startintheir naturd statedemongirating their
dominant behavior. Selfish behavior typeswould start
inarandomly selected statewith positive behavior. The
probability that amember would change statesisgiven
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Figurel: Finite state machine behavior model

The state change probabilities (b and ¢) were se-
lected to providevarianceinindividua behavior with-
out creating random, irrationd activity™™. By moving the
state change probabilities, we predicted the TSM’s
actions. Thesystem gpproached atrivia state of com-
plete predictability asthese probabilities approached
0. Setting the probabilities closer to 50% to encourage
gatechangereflected random activity that did not model
human behavior. The settingsin TABLE 1 were se-
lected to providethe network with astable population
of membersthat demonstrated willingnesstojoinacol-
|aborativeenterprise.

TABLE 1: Behavior Model Sate ChangeProbabilities

ported the behavior truthfully but, inthe casesof aBad
user, there was the chance that the report would be
mideading. Duringtesting, an e ement of collusonwas
added by mandating that the Bad user always report
positive behavior for its confederates but followed the
TABLE for al other observations.
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Figure2: Analysisof behavior model settings

TABLE 2: Behavior Reporting Based on Behavior Typeand
Sate

If a Isinits It will report
Good or Selfish Natural state The behavior as observed
Unnatural  The opposite of what was
Natural state The opposite of what was
Unnatural  The behavior as observed

Bad user

Behavior Type Initial State a b c d
Good Good 90 10 10 90
Sdlfish Random 70 30 30 70
Bad Bad 90 10 10 90

Inthiscase, theterm stableimplied that therewasa
low standard deviation in reputation indices. Users
whose reputation index displayed ahigh standard de-
viation weredisplaying unredistic behavior. Thegoal
was for “‘good” users to show positive behavior the
mgjority of thetime. Figure 2 showstheimpact of chang-
ing thesettingson theaveragereputation index va ue of
good members. Theleft sdeof thegraph demonstrates
that astable, good user had an RI suitablefor extend-
ing trust. Asthe parameterswere changed tointroduce
more erratic behavior, good users changed statestoo
frequently to demonstrate sustained positive behavior
andthusearntrust.

Thenext part of the behavior script used the same
behavior mode to predict how the observed behavior
would be reported. TABLE 2 shows how the cross
mapping of behavior typesto current behavior states
yielded observations. In most cases, the observer re-

GAMING THE SYSTEM

Thesecond stepinsmulatingthe TM Swasto con-
struct aset of operationa proceduresthat would alow
thesystem to €liminate or diminish theimpact of com-
mon abuses of atrust-based system. A commonly per-
ceived flaw inreputation systemswastheability for a
user to““game” or manipul atetheir reputationtogainan
unfair advantage. Gaming reputationsundermined trust
intheoveral system. Usersthat knew their reputation
often went to great lengthsto maintain ahigh reputa-
tion, for bothlegal andillegd purposes. INnKARMAHZ,
nodal entities successfully gamed the systemtoraise
their overal KARMA rating to achievegreater access
levelsonavirtual bulleting board. EBay usersinflated
their client/sdller ratings, which attempted to demon-
strate accumul ated trustworthiness based on transac-
tion success, through anumber of schemeslike stack-
ing?.

Thisresearch used a Soft Security concept termed
Dissuade Reputation. Thisreputation system sought
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toisolaterather than exilemi sbehaving community mem-
bers. Dissuade Reputation wasused extensveyinonline
communities such as Slashdot! and Kuro5hin®. As
withour TMS, “it’spossibleto get anedlevated K5 st
tus (atermfor reputation) but it takes continued effort
tokeepit.”

Inanarticleon onlinereputation, Derek Powazek(®
maintained that usersonly cared about their karmascore
if they knew what it was. Thisassertionwasaso stated
by Ben Salem, who pointed out the difficulty in ma-
nipulating an unknown quantity. With any scoreor scor-
ing system, therewasthedanger that community mem-
berswould competeto get the highest score, manipu-
lating what should have been acontrol into agame. If
thegame (i.e., gaining karma) wastoo easy or predict-
able, thecontrol aspect of karmalost itsmeaning. This
phenomenon wasevident on Slashdot, withitsuse of
karmapointsto gauge user activity and site privileges.
As Slashdot usersraced to increase their karma, the
administrators madethe decision to cap the amount of
karmapointsany individual could accumulate. Rather
than dissuade gaming, capping karmacreated anew
typeof gamer cdled a“karmawhore.” Theseindividu-
as stroveto reach the karma cap as quickly as pos-
sble, thendissipating their karmathrough maliciousor
disruptivebehavior beforestarting al over again.

Another popular online community isKuro5hin.
Thissite concealed the user’smojo score(itsnamefor
reputation). Usersgained aperception of their standing
only by observingther privilegelevels Concedling repu-
tation eliminated the gaming aspect but users may be-
comefrustrated and disruptiveif the system prevents
them from accessing resources.

Becausean individua ’sreputation varied amongst
hispeers, direct “oneon one” reputation gaming asis
exhibited oneBay or Amazon.comwasimpossiblein
our TMS. Inour TMS, every user (e.g., Alice) main-
tained anindividua reputation index for each associ-
ated peer (e.g., Bob). Thisreputationindex (Rl (B))
washnever shared asasinglevaue. Instead, whenAlice
was asked to recommend Bob, sheprovided evidence
intheform of non-reputable behavior grades. There-
guester wasthen |eft to cal culatetheir own reputation
index for Bob. Bob never knew what Alicethought of
him, only that she granted or denied him accessto her
resources.

SYSTEM METRICS

The TM Swas an access control system. We de-
termined that we could assessitsefficiency by examin-
ing how often the system correctly alowed access. The
cost of making thedecisions, interms of communica
tionsand storage overhead, wasa so included inthe
cd culation. Whileacknowledging that the success met-
ric of an access control system was comparative(i.e.,
one system performs better than another given aset of
circumstances), we a so experimented with critical set-
tingsto determine afeasible parameter rangewithin
whichthesystem waseffective.

Inthemost basic sense, the system was efficient
whenit correctly alowed accessmoreoftenthanit made
incorrect decisions. Incorrect decisionscamein two
forms. Fal se positive decisions occurred when atrust-
worthy user wasincorrectly denied access. Fal senega-
tive decis onsoccurred when untrustworthy userswere
incorrectly allowed access®.

Weexaminedtheratio Rof correct answerstofase
negative and fa sepositiveanswers, shownin Equation
la D wasthetotal number of trustworthiness deci-
sionsthe TM Swas asked to make. P wasthe number
of fdsepositiveanswersand N wasthe number of false
negetive answers.

R=(D-(P+N))/D (1a)

When tabulating access control decisions, wedif-
ferentiated between fa sepositivesand fa senegatives,
asBrycedid. Wedid thisdifferentiationinrecognition
of thefact that the cost of afase positivewasmuchless
than the cost of afalse negative. The cost weight (o)
wasava ue selected to represent thisdifferencein cost
and added to the previousequation. Theresultisshown
inEquation 1b.

R=(D-(P+®N))/D (1b)

Having examined the efficiency of the TMS, we
eva uated the overhead required by the syssemto ren-
der itsdecisions. The general intent of the overhead
metric (C) was to determine the cost of the level of
efficiency. Twoformsof overhead wereincludedinthe
cdculaionof C.

Communications Overhead (C_) wasdefined asthe
number of Fl that needed to be sent between trusted
peersto gain enough information to determineatrust-
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worthiness decision on aspecific peer. Equation 2ail-
lustrates how the system divided the number of Intro-
duction transactions(I) by theRIW size. Thiscompu-
tation assumed that the user would, intheworst case,
attempt to fill their RIW before calculating a new
associate’sRI. Thisassumptionisnot asfar-fetched as
it may seem, especialy if the number of reportswas
few.
C. =1*|RIW| (2a)
Storage Overhead (C_) was defined asthe number
of Fl each node stored to create adecision. Equation
2b determined C_by multiplyingthe TSsize(expressed
inthe number of stored ABRS) by the RIW size.
Cs =[TS|*|RIW| (20)
Adding thetwo coststogether yielded the number
of Flsmaintained by the TM Sover aperiod of time.
Equation 2c used thisresult, divided by the number of
correct access control decisions(D - (P+N)), to pro-
videthetotal cost for each correct decision.

C=(C.+C,)/(D-(P+N)) (20)

Cost

40 & Efficiency

304
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10+ % Efficiency

= Cost

TM5 RW  BaseRW
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Figure 3: Example Comparisons of Scenario Efficiencies
versus Costs

Base
RPGM

When we devel oped the test scenarios, each sce-
nario had independent valuesfor Rand C, asshownin

the examplein Figure 3. We called these valuesR,
andc, , wherexwasthe scenario number. In analyz-
ingR, , we wanted avalue as high as possible. The

oppositewastrue of C, , wherewe wanted the small-

est number possible. Becausethe number of different
scenarioswas bounded only by thelimits of imagina-
tion, weused Lo Presti’sformat!® for devising and or-
ganizing test scenarios.
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