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Introduction 

 

The antiferromagnet in the triangular lattice has played a fundamental role in the understanding of frustrated quantum 

systems. It is one of the most fundamental systems of geometrically frustrated magnets and has been studied using several 

techniques such as quantum Monte Carlo, and so on [1]. The main effects of frustrating interactions, in the neighborhood of a 

Neel state, are the increase of the coupling and the decrease of the spinwave velocity. It is believed that for S=1/2, the system 

displays classical Neel-ordered ground state with a 120
o
 spiral order [2]. It was argued in Ref. [3] that the triangular lattice 

has a magnetization of the lattice more reduced from its classical value than the square lattice and its Neel order may be 

estabilized more easily. The progress in the investigations of Spin Supercurrent and magnon BEC was recently described in 

the review [4]. Particularly there was overviewed the spin supercurrent Josephson Effect which is the response of the current 

tothe phase between two weakly connected regions of coherent quantum states. For quasiparticles such as magnons and 

excitons in Bose-Einstein condensation (BEC), it demonstrates the interference between two quasiparticles condensates. Spin 

current as a function of the phase difference across the junction, α2−α1, where α1 and α2 are phase’s precession in two 
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coherently precessing domains. It is the response of the current to the phase between two weakly connected regions of 

coherent quantum states [4]. It was described by Josephson in [5].  

The Bose-Einstein condensation of quasiparticles whose number is not conserved is an important phenomenon of condensed 

matter physics. In thermal equilibrium the chemical potential of excitations vanishes and, as a result, their condensate does 

not form [4]. The only way to overcome this situation is to create a non-equilibrium but dynamically steady state, in which 

the number of excitations is conserved, since the loss of quasiparticles owing to their decay is compensated by pumping of 

energy. Thus the Bose-condensation of quasiparticles belongs to the phenomena of second class, when the emerging steady 

state of the system is not in a full thermodynamic equilibrium [4]. The spin superfluid transport and Bose condensation 

(BEC) are related but a different phenomenon. The spin superfluid transport is well known from 1984 when it was discovered 

in superfluid 
3
He [6,7]. The superfluid 

3
He is an antiferromagnet. All magnetic properties, including magnon BEC and spin 

superfluid in superfluid 
3
He are indeed the properties of magnetically ordered system. 

3
He has just small relaxation rate. This 

simplified the discovery of BEC and spin supercurrent. Later these phenomena were found in many other systems, like 

antiferromagnets with Suhl-Nakamura interaction (CsMnF3, MnCO3 and so on) [8]. It was also found in YIG films [9]. The 

gradients of excited magnons wave function lead to spin superfluidity, which is the quantum transport of magnetization by 

magnons. The properties of spin superfluidity and magnon BEC has been recently well discussed in the Ref. [4]. The spin 

transport properties of materials are the corner stones for many applications. Once having these properties determined, it is 

possible to calculate the parameters for devices which can operate in the basis of these structures. Recently, the transport 

phenomenon by magnetic excitations such as magnons, excitons and so on, has been much studied due to its connection with 

spintronics [10-13]. The injection of the spin current into a magnetic film can generate a spin-transfer torque that acts on the 

magnetization collinearly to the damping torque [11]. The spin transport properties in the spin systems has been studied 

theoretically by Sentef et al. [14] who has analyzed the spin transport in the easy-axis Heisenberg antiferromagnetic model in 

two and three dimensions, at T = 0. Damle and Sachdev15 have treated the two-dimensional case using the non-linear sigma 

model in the gapped phase. Pires and Lima [16-18] treated the two-dimensional easy plane Heisenberg antiferromagnetic 

model. Lima and Pires [19] studied the spin transport in the two-dimensional anisotropic XY model using the SU(3) 

Schwinger boson theory in the absence of impurities, Lima [20] has studied the case of the Heisenberg antiferromagnetic 

model in two dimensions with Dzyaloshinskii-Moriya interaction. Zewei Chen et al. [21] analyzed the effect of spatial and 

spin anisotropy on spin conductivity for the S=1/2 Heisenberg model on a square lattice and more recently, Kubo et al. [22] 

studied the spin conductivity in two-dimensional non-collinear antiferromagnets at T=0 using spin wave theory and Lima 

at.al [23] have studied the spin transport in the site diluted two-dimensional anisotropic Heisenberg model in the easy plane, 

using the self-consistent harmonic approximation. The aim of this paper is to study the spin transport in the two-dimensional 

anisotropic frustrated Heisenberg model on a honeycomb lattice using the SU(3) Schwinger’s boson approximation. 

Recently, this formalism has been used to study the spin transport [24-27]. The critical properties of this model were studied 

using this method in [2]. This work is divided in the following way. In section II, we discuss about the method used, in 

section III is dedicated to our conclusions and final remarks. 

 

The Model 

 

The model that we are interested is represented in the FIG. 1 and is defined by the following Hamiltonian. 
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   
2

,

(1)x x y y z

ij i j i j i

i j i

J S S S S D S      

 

Where Jij=J on all horizontal bonds, Jij=J on all the other bonds, Jij= J2 on the next-nearest neighbors. We consider the value 

of spin S=1 [28,29]. The frustration here is due to the triangular lattice. This model is interesting in view of its connections to 

the insulating phase of some layered organic superconductors [30]. The isotropic model with D=0 has an ordered ground 

state. In the limit of large D, the model will be in a disordered ground state with total magnetization null separated by a gap 

from the first excited states, where there is a critical Dc denoting a quantum phase transition, described by the condensation 

of magnons, from the large D phase to the ordered phase2. 

 

Methodology and spin transport 

 

The SU(3) Schwinger boson formalism has been derived to treat systems with single ion anisotropy by Papanicolau [31] 

being a generalization of the SU(2) formalism. In this formalism we choose the basis: 

   1 1 , 1 1 , 0
2 2

i i
x y z i         

Where |n⟩ are eigenstates of Sz. The spin operators are written via a set of three boson operators tα (α=x, y, z) defined as [29] 

† † †, , (2)x y zx t y t z t      

Where |v⟩ is the vacuum state. We also have the constraint condition 
† † † 1x x y y z zt t t t t t    

In terms of the t operators we can write 

     † † † † † †, , (3)x y z

y z z y z x x z x y y xS i t t t t S i t t t t S i t t t t          

 

FIG. 1. Representation of the flow of spin current in the horizontal direction on a triangular lattice. The nearest-neighbor 

exchange J′ on all horizontal bonds and J are the other bonds. The next-nearest neighbor bonds J2 are not showed in the 

figure. 

The states 
†

xt   and 
†

yt  , both consist of eigenstates S
z
 = ±1 and have the average ⟨Sz⟩ = 0. This property will preserve 

the disorder of the ground state. To study disordered phases, it is convenient to introduce other two bosonic operators u
†
 and 

d
†
 [31]. 
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   † † † †1 1
, (4)

2 2

t t

x y x yu t it d t it      

And so 

† †1 , 0 , 1 (5)t

zu t d       

 

With the constraint u
†
u + d

†
d + 

†

z zt t =1. The spin operators can be also written as [29] 

 

   † † † † † †2 , 2 , (6)z u

z z z zS t d u t S d t t u S u d d        

 

We use the SU(3) Schwinger’s boson approximation [31] with objective to determine the regular part of the spin conductivity 

(AC conductivity) or continuum conductivity at T=0. A spin current appears if there is a gradient of magnetic field B , 

through the system. It plays the role of a chemical potential for spins. One connects a low dimensional magnet with two bulk 

ferromagnets. They act as reservoirs of spins [12,13]. One flow of spin current appears if there is a difference, B , between 

the magnetic fields at the two ends of the sample. As we are interested in calculating the longitudinal spin conductivity, we 

will add an external space, one dependent on time, magnetic field  ,B x t , applied along of the axis Z


, direction of the 

Hamiltonian Eq. (1). In the Kubo formalism [14,16,32-36] the spin conductivity is given by the following formula: 

 

 
 

 0

,
lim (7)

0q

K q

i i


 








 
 

 

Where ⟨K⟩ is the kinetic energy and  ,q   is the current-current correlation function defined by 

     
0

, , , ,0 (8)i ti
q dte J q t J q

N




   
   

 , 0q i    Is analytic in the upper half of the complex plane and extrapolation along the imaginary axis can be 

reliably done. 

The continuity equation for the lattice allows us to write the discrete version of the current as 

2

(9)
z

n
n x n

S
J J

t



  


 

Where n+x is the nearest neighbor site to the site n in the positive x direction. The Heisenberg equation of motion 

,z z

n nS i H S    , can be used with equation (9) to obtain the spin current operator 

 

 
  

2
† †

1 sin sin 3
(10)

2

x x

k k k k

k k

k kt
J J

 
   



  
       
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The real part of σ(ω), σ′(ω) can be written in a standard form as [36] 

 

     '

0 (11)reg        

 

Where σ0(ω) gives a measure of the ballistic transport and is given by σ0(ω) = DSδ(ω), where DS is the Drude’s weight 

 

 ' 0, 0 (12)Ds K q     
 

 

 

And σ
reg

(ω), the regular part of σ′(ω), is given by [36] 

 

 
 

"
0,

(13)reg
q 

 



   

 

That represents the continuum contribution to the conductivity. In equations (12) and (13), Λ′ and Λ” stand for the real and 

imaginary part of Λ. Using the Matsubara’s Green’s function, we obtain σ
reg

(ω) at zero temperature as 

  

 
 

 
 

 
 

2

2
2

2 3

0 0

1 sin sin 30,
(14)

2

x xreg

k

k

k kk d k
g B

    
     

 

           

 

We can integrate analytically the Eq.(14) to obtain in, we present the behavior of σ
reg

(ω) with ω. we must have a spin current 

flowing in the horizontal as depicted in the FIG. 1 over the material. Since the system is gapless we have obtained a behavior 

of the AC conductivity tending to infinity when ω→0, what correspond to the DC limit. Consequently we obtain a 

superconductor behavior to spin transport for the DC spin current. This behavior is similar one recently obtained for the 

honeycomb lattice and for the two-dimensional ferroquadrupolar model [24,25]. This is a characteristic of spin systems 

without gap in the excitation spectrum. As this system does not present gap in the spectrum, we have exactions to form the 

spin current in all the ω values of the spectrum. Besides, if there is no scattering mechanism, as in this model, it is expected 

that the conductivity is divergent; the reason is that spin-spin scattering is not treated properly in a mean field approach. 
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FIG. 2. Behavior of  *   where    
2

*

( )reg g b
     for α=0:3. In the range of Dc=0 and η= 0:15 at the T=0, 

the behavior of the spin conductivity does not vary a lot in the region of the quantum phase transition. As the AC 

conductivity tends to infinity in the limit ω → 0, we have an ideal spin conductor in that limit. 

 

Hexagonal Lattice 

 

The honeycomb lattice is a frustrated spin system where the frustration arises from the competing interactions rather than 

geometric constraints. The frustration is enhanced by strong quantum fluctuations due to the low coordination number 

[37,38]. Moreover, experimental data are available for several compounds such as the family of compounds BaM2(XO4)2, 

where M=Co, Ni and X=P. The magnetic ions M are arranged in weakly coupled frustrated hexagonal lattice. However, most 

of the compounds lie in the Neel ordered region. A model relevant for these materials is the J1−J2−J3 model with first, 

second and third interactions. This model was studied recently by D. C. Cabra et al. [39,40] for S=1/2 using the linear spin 

wave theory (LSWT) and SU(2) mean field Schwinger boson approximation. J. B. Fouet [41] studied the same model using 

exact diagonalization and LSWT for selected values of J2 and J3. Li et al. [42] has treated the same system using the coupled 

cluster method and the J1−J2−J3 model with S=1 was studied by S. S. Gong et al. [43] and Pires [38,44]. The model is 

depicted in the FIG. 3 and is defined by the following Hamiltonian  
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FIG. 3. Representation of the model. 

 

 

FIG. 4. Behavior of  reg   for α= 0:6 and for different values of Dc and η. For Dc and η points before of the cusp of the 

graphic of Dc vs. η as Dc=4:0, η=0:23 (solid line), Dc=3:5, η=0:25 (dashed line). On the cusp, Dc=1:5, η=0:28 (dot-dashed-

line) and for large value of Dc=4:5, η=0:35 (dotted line). The quantum phase transition point occurs on the cusp point 

(Dc=0:35 and η=0:25). Thus, we obtain an influence of the QPT point on the spin conductivity. The AC conductivity tends 

to infinity in the limit ω → 0. Therefore, we have an ideal spin conductor in the DC limit. 

 

In FIG. 4, we present the behavior of σ
reg

(ω) with ω. Due to the honeycomb crystal lattice, we must have a spin current in 

zig-zag, as depicted in FIG. 1. We obtain an influence of the quantum phase transition point of the graphic of Dc vs. η of the 

Ref. [2] on the spin conductivity. We get a bit influence of the variation of Dc and η on the curve of the spin conductivity, as 

showed in the FIG.4. The curve suffers a small increases until the cuspidpoint where after this the curve suffers a sudden 

decrease (the solid-line changes to dashed line and then it changes abruptly to dot-dashed line, decreasing further to dotted 

line).  
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Conclusion 

 

We studied the spin transport properties in the two dimensional anisotropic frustrated Heisenberg model in the triangular and 

hexagonal lattices using the SU(3) Schwinger’s boson theory. Because of the triangular symmetry of the lattice, we must 

have a spin current flowing in the J′ (horizontal direction) through the material. How we obtain a spin conductivity tending to 

infinity when ω→0, we must have, in this limit, ideal spin transport, independent of the value of the Drude’s weight DS 

found. Recently, the critical properties of this model were studied using the SU(3) Schwinger boson method at [2]. From a 

general way, the two-dimensional Heisenberg model is a very important model due the intense tentative to understand the 

interplay of antiferromagnetism and superconductivity [45,46]. From an experimental point of view, recently there is an 

intense research about the quantum Hall effect for spins and magnon spintronics [10-13]. In the studies of these effects, often 

only the sign differences between related quantities like magnetic fields and generated spin and charge currents are 

determined. 
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