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KEYWORDSABSTRACT

The present paper justifies the application of the temperature-dependent
potential to the molecular dynamics method through the example of uranium
dioxide. Substantiation of the temperature dependence of interatomic
potential is carried out based on the Newton quantum equation. Mean force
can be represented as a sum of derivative of potential at the average atomic
coordinate and the summand that depends on square dispersion of the
coordinate depending on the temperature of the crystal. The selection of
parameters of potential was done at three temperature values: the initial
temperature and temperatures of phase transitions � 2670 and 3120K,

parameters of potentials for all other temperatures were found by
approximation. The paper calculated temperature dependencies for the lattice
constant, enthalpy, heat capacity. Our data are good agreement with
experimental data.  2014 Trade Science Inc. - INDIA

INTRODUCTION

At present, the molecular dynamics method is
widely employed for the simulation of thermodynamic
and nonequilibrium processes.However, the classical
method of the molecular dynamics has some significant
restrictions. For example, it is impossible to take into
account changes in the crystal electron subsystem and,
hence, their effects on the heat transfer and cohesive
energy.Besides, this method employs the Newtonian
mechanics equations contradicting the quantum char-
acter of the atomic interaction. Also, the quantum mo-
lecular dynamics method does not take into account
some quantum effects like zero-point energy and tun-

neling effects and requires significant computational
power and thus are substantially constrained by simu-
lation time.

In the classical molecular dynamics method (MD)
the form and the type of the interatomic potential are
postulated, and its parameters are constant regardless
of the purpose of calculation. Recent works Ref.[1,2]

devoted to the analysis of the interatomic forces re-
vealed the dependence of interatomic potential on the
temperature and density of the electron states. Thus, in
terms of the perturbation theory, the authors of Ref.[1]

perform averaging of the interaction energy on the field
states with the temperature-dependent weight coeffi-
cients. As a result, a linear temperature dependence of
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the interatomic potential has been obtained.
The temperature-dependent potential in the molecu-

lar dynamics method is still not used widely, or is ap-
plied to specific simulation tasks only Ref.[1-3]. Appar-
ently, if a heat transfer process with temperature gradi-
ent is simulated, or if local hot spot is simulated, there is
uncertainty in selection of temperature-dependent po-
tential parameters. That is why introducing temperature
parameter to the potential opens new possibilities in the
adjustment procedure on one hand, but allows simula-
tion of isothermal processes only on the other hand,
which limits the choice of simulated process to some
degree. The present work aims to justify application of
temperature-dependent potential for classic molecu-
lar dynamics in general terms, and also to define the
principle of selection of coefficients of potential.

In Ref.[2] temperature dependence of potential was
used to simulate overheated electron gas in a crystal
exposed to radiation. The model took into account two
temperatures �the temperature of the crystal and the

temperature of the electron subsystem; this is a so called
two-temperature model[4-6]. The authors used the MD
method based on the Finnis-Sinclair potential and em-
bedding atom model. In order to perform parameter-
ization of the potential in terms of the density functional
theory, the electron density was calculated using the
following expression[2]:

  
i

ii rfr
2

2)(  (1)

where f
i
 are the occupation numbers of the state i, in

accordance with the Fermi-Dirac statistics,  ri  is the

wave function of the electron in the state i. Thus, the
electron density used with the semi-empirical Finnis-
Sinclair potential depends on the temperature and leads
to exponential dependence of the interatomic forces on
the temperature of the electron subsystem. It is worth
mentioning that in Ref.[2] the temperature of electrons in
the crystal reached 105 K, while arbitrary measurable

effects on the form of the potential were observed at
temperatures of 1000K and higher.

The authors of[3] used temperature dependence of
the potential for molecular mechanics simulations. The
molecular static simulations involve minimization of the
system energy with respect to the atomic positions.
However, molecular static simulations are valid only at

0 K (absolute zero). The idea of work[3] is to develop
temperature dependent interatomic potentials that are
valid at elevated temperatures (T > 0 K) so that static
molecular simulations can be performed to model high
temperature phenomena. The authors proposed the
equivalent static molecular simulation technique that can
model high temperature (T > 0 K) phenomena at a frac-
tion of the computing time of conventional MD simula-
tions. The advantage of the proposed method is
achieved by invoking some readily available material
properties to extend the interatomic potential function
to describe thermal effects. Temperature dependent
interatomic potentials are developed in order to facili-
tate the desired equivalent static simulations at elevated
temperatures. The Lennard-Jones potential is repre-
sented as a function with a lattice parameter that is lin-
early dependent on the temperature:
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B
 is the Boltzmann constant,

R
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0
 is a lattice parameter at the temperature

T, á is alinear expansion factor, R
0
 is the initial value of

the parameter. The given method allowed to find mini-
mum energy states, elastic constants and
thermomechanical tensions.

We have to emphasize that the molecular mechan-
ics has some significant restrictions.It does not allow
simulating dynamical effects such as radiation damage
and cascades, the phonon oscillation spectrum etc. Thus,
application of the temperature-dependent interatomic
potential for MD modeling is of particular interest. Few
works devoted to temperature dependence of the po-
tential aim to solve a narrow class of problems, like
Refs.[2-6], in which the potential takes into account the
overheated electron gas in a crystal. Therefore, in gen-
eral terms of classic molecular dynamics, the substan-
tiation of using the temperature-dependent potential as
well as comparison of computation results for various
potentials with experimental data have not been made.

1 On application of the temperature-dependent
potential for MD

Since the temperature dependence of the inter-
atomic potential is explained individually in any particu-
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lar case Ref.[1-7], generalization is required. To do this,
we determine atomic potential energy in a crystal at vari-
ous temperatures and estimate the effect of the change
of this energy on the solution of the Newtonian equa-
tions within the MD method. In terms of the quantum
mechanics formalism and, in compliance with the
Ehrenfest theorems, the mechanical quantities are sub-
stituted for the corresponding operators of momentum,
force and coordinate Ref.[8]. A consequence deriving
from Ehrenfest theorems for ensemble average of me-
chanical values in the one-dimension case is the New-
ton quantum equation:
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where ì is the mass of the atom wave packet, )( xU  �
describes the averaged potential energy of the atom in
a crystal, x  is the center of mass of the wave packet in
a crystal.

The atom is represented as the wave packet, i.e. its
wave function ø notably differs from zero in a small
spatial domain Äx only. The wave function includes wave
functions of all electrons and nucleus. We do not distin-
guish nucleus wave functions from electron wave func-
tions here. Therefore, we calculate the atom impact
force as a sum of forces acting on the nucleus and
the electrons of the atom. If the average value of the
coordinate varied in accordance with the classical New-
ton equation and the wavepacket shape did not change,
the motion of the atom or the wave packet |ø|2 could
be considered as the motion of a point particle that
obeys the classical mechanics the MD method is based
on. But the description of atomic motion in terms of
quantum mechanics does not allow this for two rea-
sons. First, the wave packet spreads; second, in order
to make the center of mass of the x  packet coincide
with the point particle motion in the U(x) field, the fol-
lowing condition is required:
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The last equation is generally not fulfilled and is valid
only under certain conditions that put restrictions to the
MD method as well. By convention, the average value
of the force could be determined with the operator -
Û/x[8]:
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As a result, the Newton quantum equation can be
written as follows[9]:
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Thus, the quasiclassical approximation applies and
the molecular dynamics calculations give the correct
result only if the following condition is satisfied:
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The state of the particle coincides with the classical
one only if the kinetic energy coincides with its classical
analogue. This means, the uncertainty in the kinetic en-
ergy should be much less than its average value. Taking
into account the Heisenberg relation, this condition can
be written as:
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The quasiclassical approximation and the Molecu-
lar dynamics method are valid if the conditions (7,8)
are satisfied. Both inequalities are simultaneously ful-
filled only at high kinetic energies of the atom and slightly
varying fields. We can see that as the temperature grows,
the kinetic energy grows as well, so the inequality (8)
remains valid unlike the expression (7). As the tem-
perature grows, this effect becomes even stronger. That
is why the expression (7) is less strictly fulfilled as the
temperature grows, which in turn results in substantial
discrepancy between the molecular dynamics calcula-
tion and experimental data. However, the temperature
dependence can be taken into consideration by intro-
ducing a temperature dependent effective potential
U

eff
(x,T), which depends on the temperature param-

eter so, that for each temperature T the following New-
ton quantum equation is fulfilled:
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The equation (14) does not define the form of in-
teratomic potential, but it provides the way to modify
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the classical MD potential. Taking into account the in-
equality (10), the type of the potential U

eff
(x,T) has the

same restrictions as U(x) does. On the other side, varia-
tion of the potential as the temperature changes should
be much less than the initial absolute values. Consider-
ing expressions (7) and (9) the first-order approxima-
tion of the potential U

eff
(x,T) can be defined as a func-

tion linearly dependent on the temperature, similarly to[3],
so that temperature variations are small quantities of
the second-order with respect to U(x). In other words,
we can set the problem of finding the efficient potential
as:

(10)

where|U(r)|>>|äU(r,T)|.

2 Choosing the form and parameters of the poten-
tial

Apparently, the advantage of the temperature-de-
pendent potential is observed at higher temperatures,
thus as a testing ground for the method we select ura-
nium dioxide that has wide practical applications and
high melting temperature of 3120 K. Uranium dioxide

is ionic crystal with cubical structure similar to fluorite
CaF

2
.

Two models accounting for atomic description have
been considered by the different authors having devel-
oped potentials for UO

2
 Ref.[10,11]. The first one is the

rigid ion model, which describes atoms as massive point
charges interacting via electrostatic interactions and a
short-range potential. The second model is the shell-
core model that describes atoms as one massive point
charge - representing the nucleus and the inner electron
shells - bound by a spring to a massless shell - repre-
senting the valence electron shell. In this model the elec-
trostatic interactions act between both species, but the
short-range potential acts between shells only. With both
models, interactions between ions have been formu-
lated in terms of a short-range potential in addition to
the long-range Coulomb interactions.

In our case the choice of a potential form is not
crucial, meaning the form of the potential does not af-
fect adding temperature dependence to it. The particu-
lar choice of a potential form depends on other criteria,
such as simulation conditions, computational power as
well as subjective preferences of researchers. We took
the most popular rigid ion model that takes into ac-

count Coulumb interaction and the short-range
Buckingham potential:
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Since such computation for UO
2
 was carried out

for the first time and we operated in terms of the �zero-

order� approximation, we decided to limit the number

of temperature-dependent parameters and only used
the fractional charge z(T)and the parameter f(T). Later,
the number of temperature-dependent parameters can
be increased. Taking into account expressions (7) and
(9) we took coefficients in the following form:

(12)

Taking the Coulumb potential U
eff

(r,T) as an ex-
ample, let us show that the chosen form complies with
the expression (10):

(13)

In our case, values of fractional charges will be de-
pendent on electron shell. As the temperature raises,
the bind of the electron shell with the nucleus decreases,
therefore, dipole moment decreases, and the value of
fractional charges in the potential should decrease too.
Taking into account expressions (7) and (9), and the
fact that at the temperature of T

0
=2670K uranium di-

oxide moves to the superionic state, parameters of the
potential are taken as piecewise linear slowly-varying
functions of the temperature:

(14)

Here, the fractional charge value is specified for ions of
oxygen. The charge for uranium ion is obtained by mul-
tiplying the value by two. The linear functions for pa-
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rameters intersect at T
0
=2670K, and linear coefficients

at T change rather abruptly in the transition point. The
rest parameters non-dependent on the temperature were
taken from Ref.[12] and are listed in TABLE 1. Thus,
the number of parameters in the potential increases by
the number of linear coefficients at the temperature for
the charge and the f parameter.

The calculation was carried out on a

3 Calculating thermodynamic characteristics of
uranium dioxide

The present paper perform comparison of uranium
dioxide thermodynamic characteristic calculation results
obtained with the present method with results by other
authors taken from overview papers Ref.[10,11], and also
with experimental data taken from the overview paper
Ref.[13]. We, like the bulk of authors, perform recon-
struction of the potential of the parameter using experi-
mental data of the thermal dilatation of the UO

2 
lattice

and by enthalpy variation Ref.[11]. Parameters z
i
 and

f(T) calculated using the proposed method have two
linear regions with a break at the temperature of 2670 K

� this is temperature of transition to the superionic state

Ref.[14]. This state is characterized by melting of the
oxygen sublattice while the uranium ion structure re-
mains intact. This is a so called ë-phase. We intention-

ally introduce two parameter regions, because they
describe different phase states Ref.[13].

The method proposed in this paper allows calcu-
lating the lattice parameter (Figure 2) and enthalpy (Fig-

ure 1) of uranium dioxide with good consistency of cal-
culated and experimental data for the whole tempera-
ture range. Within the temperature range of 1500-
3120K, variations of the effective charge in the poten-
tial and variations of the parameter f(T) are less than
2% and 7% respectively, which corresponds to the
approximation of small deviations in the potential. Im-
portantly, these dependencies calculated with the mostly
employed potentials, such as Basak[15], Morelon[16],
Yamada[17], Potashnikov[18], Arima[19], Lewis[20] exhibit
significant disagreement with the experimental data ob-
tained for the high temperature range of 1500-3120K.

Interestingly, the lattice parameter calculated using
the Basak and Morelon[15,16] potentials well coincides
with the experimental values (Figure 2), but the enthalpy
function is in disagreement with the temperature increase
(Figure 1). In contrast, the calculated data obtained with
the use of Yamada potential exhibit significant errors
for the lattice parameter, while the accuracy for the bulk
modulus is rather good Ref.[11].

The approach proposed in this paper results in good
agreement with experimental values in the whole tem-
perature range, and the discrepancy between calcula-
tions and experimental data does not exceed 0.5% (Fig-

TABLE 1 : Temperature independent parameters of the po-
tential represented as (11)

 a, Å b, Å c, eV1/2
·Å

3 

U 1.318 0.036 0 

O 1.847 0.166 4.166 

supercomputer based on two Intel Xeon processors
with 160 Gflops of computational power each, and
four graphic processors Nvidia Tesla K10 with a peak
computational power of 4.58 Tflops each. The soft-
ware used for simulation was the DL_POLY 4.04 sys-
tem developed in Daresbury Laboratory (UK). Source
codes of the program were obtained from the devel-
oper and were not modified. The system compiled with
MPI (OpenMPI) and CUDA (CUDA 4.0) parallel
processing technologies gives the edge by several or-
ders in computation time over sequential implementa-
tion. This hardware-software appliance allowed to
perform computations for simulation periods of 10 ns
and more. The potential was set as a file with coeffi-
cients from the TABLE 1 and calculated using (14),
so we had a set of files for various simulation tem-
peratures.

The periodic boundary conditions were applied.
The translated cell was selected as a cubic fluorite struc-
ture crystal containing from 768 to 12000 ions. All com-
putations implied the integration step of 2 fs and the
cut-off radius of 10 ú.The Coulomb interactions were

treated with the classical Ewald summation technique.
Depending on the task, computations were performed
for a microcanonicalNVE ensemble or a canonical NPT
ensemble, but both cases fulfilled isothermal conditions.

Errors were calculated in accordance with root-
mean-square deviation, and for measuring the lattice
parameter dependence on the temperature they were
0.016-0.018%, and for measuring enthalpy (Figure 1)
they didn�t exceed 0.01%.
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ures 1-3). The selection of temperature-dependent po-
tential parameters was performed for the temperature
values of 300, 2670 and 3120K only, while for other
temperatures a linear approximation of parameters was
used. The adjustment of parameters of the rest of po-
tentials, which do not depend on temperature, was car-
ried out at either 0 or 300 K Ref.[10,11,15-21].

Heat capacities at constant pressure C
P 
and con-

stant volume C
V 
were calculated in a canonical NPT

ensemble and in a microcanonicalNVE ensemble re-
spectively. For that purpose, the dependence of the atom
system energy on temperature was approximated by
polynomial functions. Then, the derivative function of
the energy with respect to temperature was calculated
as a derivative of obtained polynomials:

 
( )P

P

E
C T

T

 
  

 
and 

 
( )V

V

E
C T

T

 
  

 
(15)

Figure 3 represents dependences of heat capacity
on temperature C

P
(T) obtained from experimental data

and calculations using the molecular dynamics method.
In the temperature range of 1500-3120K the discrep-
ancy of calculated data based on the most accurate po-
tentials varies from 2 to 90%. The spread of experi-

mental data in the temperature range up to 1000K does
not exceed 4-6%, and for temperatures higher than
2000K the spread increases up to 15-20%. The inter-
val between 1000 and 2000K is not studied experi-
mentally, and is described by a polynomial that �stitches�

both areas together. Approximation functions and un-
certainties are recommended in overview papers[13,22].
From interpretation of these experimental data, Ronchi
and Hyland[23] calculated the contributions of each pro-
cess to compare with available data and provided an
excellent description of the theoretical understanding of
the contributions of each physical process to the heat
capacity. The dominant contributions in each of four
temperature intervals for the solid discussed in detail
by Ronchi and Hyland[23] are summarized below.
1) From room temperature to 1000 K, the increase in

heat capacity is governed by the harmonic lattice
vibrations, which may be approximated by a Debye
model. By 1000 K, this contribution becomes con-
stant;

2) From 1000 to 1500 K, the heat capacity increases
due to increase in the anharmonicity of the lattice
vibrations as evidenced in the thermal expansion;

3) From 1500 to 2670 K, the increase in heat capac-

Figure 1 : The temperature dependence of the enthalpy for the experimental data taken from the overview paper by Fink[13], the
present paper calculation data and data with applied various potentials by Basak[15], Morelon[16] and Potashnikov[18]
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ity is caused by formation of lattice and electronic
defects. The peak in the heat capacity at 2670 K
(85.6% of the melting point) has been attributed to

Frenkel defects both from theoretical considerations
and neutron scattering measurements of the oxy-
gen defect concentration as a function of tempera-

Figure 2 : The difference of temperature dependence of the UO
2
 lattice parameter between the experimental data taken from

the overview paper by Fink[13] and the present paper calculation data and data with applied various potentials by Arima[19],
Basak[15], Lewis[20], Yamada[17]. The error bar is denoted for the experimental data

Figure 3 : Comparison of experimental data taken from the overview work[13] with the present work calculated data of
temperature dependence of uranium dioxide heat capacity C

P
 using various potentials Arima[19], Basak[15], Lewis[20], Yamada[17]
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ture. A similar discontinuity and anion behavior was
observed for ThO

2
[24,25];

4) Above the phase transition temperature, the peak
of the heat capacity drops sharply due to rapid satu-
ration of the defect concentration. From 2700 K to
the melting point, Schottky defects become impor-
tant.
As the calculations show (Figure 3), the dependen-

cies C
P 
and C

V
, calculated using the temperature-de-

pendent potential also are in good agreement with ex-
perimental data in the entire range. All potentials below
the temperature of 1500K exhibit heat capacity in ac-
cordance with the Dulong-Petit law, and above 1500-
2000K only two potentials, Basak and Yamada, show
small discrepancy from the constant value, but are still
far from abnormal increase of heat capacity. Formation
of lattice and electronic defects is the reason for abnor-
mal increase of heat capacity at temperatures higher
than 1500K, which is effectively taken into account in
our model. We cannot explicitly separate the deposit of
electronic excitations in our calculations, but this en-
tropy term is taken into account implicitly during fitting
of parameters of the potential. As shown our calcula-
tion data, the abrupt increase of heat capacity at tem-

Figure 4 : Comparison of experimental data calculated using the expression (25) and calculated temperature dependencies of
the C

P
/C

V
 uranium dioxide heat capacity using various potentials Arima[19], Basak[15], Lewis[20], Yamada[17]. Dotted line desig-

nates uncertainty of the experimental data, line at the value of one separates the physical area from the unphysical one

peratures higher than 2500K can be caused by fast
growth of Frenkel pairs.

The calculated dependencies C
V 
virtually coincide

with C
P

[11], so it is interesting to take a look at the C
P
/

C
V
 ratio presented at Figure 4. The heat capacity C

V
 is

not defined experimentally[13], but is calculated using
the thermal expansion coefficient á, molar volume V

m

and isothermal bulk modulus â
T
 with the following ex-

pression Ref.[11]:
(16)

From this expression we can see that C
P
>C

V
, so

Figure 4 differentiates areas below and above one, cor-
respondingly, the area above one is unphysical. The
unphysical area of the C

P
/ C

V
 ratio gathers calculations

based on all potentials except the temperature-depen-
dent potential. Apparently, recalculation of errors for
the experimental data plot produces high value of un-
certainty that is mostly caused by measure errors of C

P

and â
T
. The calculation result based on the tempera-

ture-dependent potential is substantially better for few
reasons. First, the obtained values lie in the physical
area above one for the almost entire temperature range
of 500-3000K. Second, taking into consideration low
accuracy of experimental data our results fall within the
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uncertainty area. Third, the calculated and the experi-
mental curves are similar and have breaks at 1300-
1500K and maximums at 2500-2700K.

The obtained conformity of the experimental data
with calculation results can be explained by studying
uranium dioxide atom oscillation spectrum using MD
method for various potential. This is planned for the
next paper. For now we can specify several consider-
ations to put physical ground for temperature-depen-
dent potential application.

Uranium dioxide shows semiconductor properties
at very high temperature, 1500K or higher. At such tem-
peratures ambipolar conductivity appears, unbound
electrons and holes appear, lattice and electronic de-
fects are produced, which leads to abnormal growth of
the heat capacity C

P
. Temperature dependence of the

potential is in the first place related to changes in elec-
tron subsystem Ref.[2], such as changes of crystal�s va-

lence band density state and appearance of unbound
charge carriers. The potential change is small, but it
should greatly influence atom behavior during high tem-
perature region simulation. Calculations made with the
classic MD do not allow to take into account changes
in electron subsystem of a crystal, and thus, heat ca-
pacity is practically temperature-independent (Figure
3).

CONCLUSION

On the example of uranium dioxide thermodynamic
property simulation, the present study shows that ap-
plication of the temperature-dependent potential to the
molecular dynamics method allows obtaining good com-
pliance of the calculated date with the experimental
values. The temperature dependence of the interatomic
potential is obtained as estimation of the average inter-
action force value in the Newton quantum equation.
The paper shows that the averaged force value can be
represented as a sum of derivative function of the po-
tential of the average atom coordinate and a summand
that depends on the square dispersion of the coordi-
nate. If the first member complies with the classic New-
ton equation, then the second one depends on crystal�s
temperature, according to quantum statistics.

Temperature dependence of the potential was in-
troduced to the semi-empirical potential for uranium di-

oxide that takes into account Coulomb interaction and
the short-range Buckingham potential. The selection of
parameters of the potential was performed at three tem-
peratures � the initial one (300K) and the temperatures

of phase transitions � 2670 and 3120K, for the rest of

temperatures the potential was specified by linear ap-
proximation of parameters.

Comparison of calculation results with the tempera-
ture-dependent potential and calculations based on the
most employed today�s potentials has shown promis-

ing outlook to apply the suggested method. The tem-
perature dependences of the constant lattice, bulk
modulus, enthalpy, and heat capacity at constant pres-
sure and volume have been calculated. The best com-
pliance with the experimental data was acquired during
the analysis of heat capacities and their ratio. The cal-
culations conforms to experimental data in the entire
temperature range of 300-3120K, while methods
based on other potentials display significant discrep-
ancy at temperatures higher than 1500K. Moreover,
C

P
/ C

V
 heat capacity ratio goes to the unphysical area

below one for all potentials, while the calculation based
on the temperature-dependent potential is consistent
within the experimental data accuracy.
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