
Semantic data management in information integration
system based on object deputy model

Jun Qiang Liu*, Zhiyong Peng, Xiaoling Guan
College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, (CHINA)

E-mail : liujunqiang@msn.com
Received: 19th August, 2010 ; Accepted: 29th August, 2010

Regular Paper
Trade Science Inc.

Volume 4 Issue 4

BioSciences
Research & Reviews in

BioSciences
RRBS, 4(4), 2010 [147-155]

ISSN : 0974 - 7532

Semantic data management;
Object deputy model;

Semantic search.

KEYWORDSABSTRACT

Semantic data management is a key issue in integration of heterogeneous
biological data. Traditional database system is not suitable for complex
semantic data management. Moreover, most of the biological data manage-
ment systems cannot provide efficient semantic search over database. In
this paper, we present a data warehouse which adopts the object deputy
model to store semantic biological data. Most important of all, we can
provide more convenient and efficient semantic search for users. The ex-
periment results show that our approach is more feasible and efficient than
the traditional one.  2010 Trade Science Inc. - INDIA

INTRODUCTION

Many biological and medical applications require
access to a variety of molecular biological objects, such
as genes, proteins, their interrelationships and functions,
etc. These objects are maintained in a high number of
diverse web-accessible data sources[1]. However, the
highly distributed and heterogeneous characteristics of
biological databases make it inconvenient greatly to re-
trieve needed semantic information from different data
sources[2]. Semantic data management is one of the great
challenges confronting the integration of biological data.
It also remains a challenge for the majority of biological
researcher on how to carry out the semantic search in
those heterogeneous data sources in a rapid and effi-
cient way.

There are mainly two approaches which appeared
in the literatures[2,3,5,11,12,14-16]. One approach[5] is that

only store semantic similarity table and biological data
using relational database and using the term in GO to
search semantic similar proteins. Another approach,
AceDB[16] has the advantages of accommodation to
irregular objects and good schema extension for classes.
However, it possesses less flexibility on describing the
relationships between objects and classes.

For this purpose, many renowned bioinformatics
centers have presented their own solutions. There are
some information integration systems such as the Entrez
system developed in NCBI[2], the sequence retrieval
system (SRS) of EBI[3] and so on. The advantage is
that they consider cross-references between sources.
However, most of them aim at the heterogeneity of struc-
ture, hardly focusing on the integration of the content of
data from different databases.

In order to manage semantic heterogeneity in bio-
logical data warehouse systems, using ontology for the

id10083671 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

mailto:liujunqiang@msn.com

.148 Semantic data management in information integration

Regular Paper
RRBS, 4(4) 2010

explication of implicit knowledge becomes an approach
to provide semantic search. But semantic search based
on relation model[12,17] has a lot of join operations which
are time-consuming very much. Moreover, only simi-
larity relation between ontology can be expressed in
ref.[12] so that the capacity of semantic search is limited.

In this paper, a new semantic data warehouse
based on object deputy model has been developed.
The system make a clear distinction between data and
semantic of the data (ontology), and take into account
semantic correspondence between ontologies. Map-
pings such as DB2GO(mapping from other biology
ontology to Gene Ontology), consists of all kinds of
semantic relationship(including similarity, Is-a, and so
on) and is better than[12]. The construction of seman-
tic relation table is to record all kinds of relationship
and similarity scores derived from any pair of GO
terms, and cross-reference in instance-level can solve
the problem of cross-classes query with semantic. Most
important of all, in our framework, it is easy to se-
mantic search in terms of bi-directional pointers be-
tween objects and deputy objects, not only saving a
mass of storage space, but also having higher perfor-
mance of semantic search.

Object deputy model

Object deputy model[7] can satisfy the requirements
stemming from complex, high performance biology data
managements with the concepts of deputy objects and
deputy classes. In this section, we adopt the object
deputy model to describe the biology data manage-
ment.

The object deputy model was at first introduced by
the authors for the unified realization of object views,
roles, and migration[7]. Biology data consist of the data
entity and semantic relations between these entities.

Definition 1

Each biology object has an identifier and some at-
tributes. The schema of biology objects with the same
attributes is defined as a class C = <O, A>.
1 is the extent of C, oO is one of instances of C
2 A is the set of attribute definitions of C, (T

a
 : a)A,

where T
a
 and a respectively represent type and name

of an attribute. The value of attribute a of scientific
object o is expressed by o.a. For each attribute,
there are two basic methods.

read(o, a) o.a, write(o, a, v) o.a := v.

Here, stand for operation invoking, result returning.

Definition 2

A deputy biology object is derived from object(s)
or other derived object(s). The latter is called source
object(s) of the former. Source objects and derived
objects are linked by bi-directional pointers between
them. Deputy objects have their own persistent identi-
fiers, and can inherit some attributes from their source
objects by switching operations without occupying stor-
age space, and can also add their additional attributes.
A deputy class defines the schema of deputy objects
with the same attributes. Let Cs = <Os, As > be a source
class, its deputy class Cd is defined as Cd = <Od,
Ad*Ad

+
>.

1 Deputy object Od = {od
i
 od

i
  os

i
  �os

i
� 

{os
i
}, sp(os

i
)  jp(�os

i
�)  gp({os

i
}) = =

true}, is the extent of Cd, where od
i
 os

i
  �os

i

�  {os
i
} denote od

i
 is a deputy object of

os
i
,�os

i
�, or {os

i
}, and sp, jp, gp represent

selection, combination, and grouping predicate re-
spectively.

2 AdAd
+
is the set of attribute definitions of Cd.

3 (Tad : ad)Ad is the attributes inherited from (Tas :
as)As, and attribute values of derived object od are
computed through switching operations that need
to read attribute values of source objects. Switching
operation for the read method of these attributes is
defined as:

read(od, ad)  fTas Tad (read(os, as). (Tad
+
 :

ad
+
)Ad

+
is the additional attributes of Cd, of which ba-

sic methods are defined as:
read(od, ad

+
)   od. ad

+
, write(od, ad

+
, vd

+
)  od. ad

+

:= vd
+.

According to above definitions, during the course
of each query, attribute values of deputy biology ob-
jects inherited from source objects are still computed
through switching operations that need to communicate
with the underlying information source.

Definition 3

Update propagation between biology objects and
their deputy objects.
1 If a biology object o is added into class C, then all

of deputy classes of C are checked. If o satisfies the
predicate of some deputy class Cd, an object od of
Cd is created as a deputy object of o. Deleting a
biology object causes deletion of all of its deputy

Jun Qiang Liu et al. 149

Regular Paper
RRBS, 4(4) 2010

objects.
2 If a biology object o in class C is updated, all of its

deputy objects will be updated automatically. Sup-
pose that there are some deputy classes of C, of
which predicates might not be satisfied by o before
the update and may become satiable after the up-
date, new deputy objects of o can be added to these
classes. Modification of an object may cause dele-
tion of its deputy objects.
Based on the object deputy model, we have imple-

mented a database system called TOTEM and designed
an object deputy database language which can create
various kinds of deputy classes, including
SelectionDeputyClass, JoinDeputyClass, Union Deputy
Class, and GroupDeputyClass.

Biology information

The amount of molecular biology data available on
line increases dramatically in a few years. Despite the
abundance of data, the understanding of these data lags
far behind the collection. A key question that molecular
biologists try to understand is the protein interaction
mechanism, i.e. why the variation in proteins can lead
to diseases such as HIV (Human Immunodeficiency
Virus).

In order to manage semantic data in biological da-
tabase systems, the meaning of the interchanged in-
formation has to be understood across the systems.
Using ontology for the explication of implicit knowl-
edge becomes an approach to overcome the seman-
tic heterogeneity. By capturing knowledge about a
domain in a kind of shareable, computationally acces-
sible and computable semantics about the domain
knowledge they describe, ontology provides a model
of concepts that can be used to form a semantic frame-
work for many data storage, retrieval and analysis
tasks.

The most popular ontology used in biology field is
Gene Ontology (GO). GO provides a structured con-
trolled vocabulary of gene and protein biological roles,
which can be applied to different species. GO describes
gene products from three orthogonal taxonomies or
aspects: molecular function, biological process and cel-
lular component[6]. These vocabularies and their rela-
tionships are represented in the form of directed acy-
clic graphs (DAG). We use GO as a tool for biological
clustering and constructing DB2GO class to correlate
GO annotated entries from data sources with GO terms,

and provide semantic similarity class to record similar-
ity scores derived from any pair of GO terms and cross-
link and cross-link(gene) class to record the correla-
tion in instance level.

A semantic data management example

In this section, we give an example of the semantic
data management system. Consider the example of a
pharmaceutical researcher who wants to research drugs
to combat HIV.

The HIV is composed of two RNA strands en-
cased in a protein envelope. The viral envelope has 2
proteins, named gp120 and gp41. The gp120 binds to
CD4, a receptor protein on a type of white blood cell,
called CD4+ T cells. The gp41 then causes the fusion
of the HIV with the T cell. After the virus has merged
with a cell, the viral RNA is inserted into the cytoplasm
of the cell. Each virus particle has 2 copies of an RNA
genome, which are transcribed into DNA in the infected
cell and integrated into the host cell chromosome with
the help of an enzyme called reversed transcriptase.
The viral RNA copies itself into the DNA of the cell,
causing the cell to produce more of the viral RNA. The
RNA transcripts produced from the integrated viral DNA
serve both as mRNA to direct the synthesis of the viral
proteins and later as the RNA genomes of new viral
particles, which escape from the cell by binding from
the plasma membrane, each in its own membrane en-
velope. For more details on how HIV operates, you
can see (http://www.niaid.nih.gov/factsheets/
howhiv.hom).

A researcher may first find all related proteins using
sequence alignment method to a protein that is known
to be involved in a disease process, such as gp120,
gp41 or CD4. Second, he may want to find all drugs
correlated with these proteins and know about what
happened in gene. However, sequence alignment
method has certain limitations that are compounded by
the increasing size of the target database: Sequences
containing many repetitive elements or LCR (Low-com-
plexity regions) are likely to produce false positive or
seemingly unrelated matches. Semantic similarity search
based on molecular biology functions is a better method
for semantic search.

Semantic data management

In this section, we use the example above to ex-
plain our framework. This system can retrieve the cor-

.150 Semantic data management in information integration

Regular Paper
RRBS, 4(4) 2010

relation data from different sources through the proce-
dure of data extracting, transforming and cleaning as
described in[9]. By using GO as a tool for biological
clustering and constructing DB2GO table to correlate
GO annotated entries from data sources . By construct-
ing DB2GO, the entries in the member databases are
linked to the terms of Gene Ontology Database organi-
cally. In the DB2GO table, it is quite easy to find en-
tries, which are all annotated by the same GO term,
from different databases. Since all these entries are an-
notated by the same GO term, they are semantically
identified, and thus the semantic heterogeneity between

databases is partially resolved. Various measures have
been developed for quantifying the semantic similarity
in terms of ontology. In order to carry out the compari-
son of semantic similarity in a convenient way, we cal-
culate the similarity of every pair of terms in GO (each
term corresponds with a node in the DAG of GO) ac-
cording to the algorithm[8] and experts, and then store
the results into the semantic similarity table as follows.

The difference between our approach and paper[12]

is that there is only similarity between ontology in[12],
whereas there are many semantic relationships as shown
in table DB2GO in our system.

Figure 1 : Semantic integration

Figure 2 : Semantic data management

Jun Qiang Liu et al. 151

Regular Paper
RRBS, 4(4) 2010

Modeling semantic information by relational data
model need multiple tables and these tables must be
linked using primary key and foreign keys. Object-ori-
ented data model can be used to define complex se-
mantic objects. Objects with the same attributes and
methods can be defined by a class. Most of object ori-
ented databases restrict that each object is a direct in-
stance of only one class and indirectly belongs to all
super-classes of this class. That is, an object cannot
reside simultaneously in two classes which are not re-
lated by a sequence of IS-A relationships. The com-
plex semantic data comprises of all kinds of relations
(IS-A, Part-of, Regulate, and so on), so it�s hard to be
stored in object-oriented databases. In addition, data
redundancy and consistency maintenance are also great
handicap. Object deputy model can overcome the
above problems in the following.

Semantic integration

We can get the DB2GO table from data sources,
such as protein from swissprot[4], and get the similar
class is computed according to the algorithm in[8], and
the objects value of cross-link and cross-link(gene)
class are get from[14]. All DB2GO tables about proteins
are union as protein class in our system. The data down-
loaded from data sources consists of multiple semantic
values. How to merge with similar table in figure 1 is
difficult in relational model or object oriented data model.
The nested attribute structure (one ontology may has
many similar ontology, so many ontologies form the

nested structure) is not supported effectively in infor-
mation integration using relational model, and object
oriented model is not enough for information integra-
tion because it has two serious problems. It can only
provide subclass constructor and support inheritance
from super-class to subclass. Information integration
needs not only specialization but also aggregation. The
JoinDeputyClass using object deputy model can solve
the problem.

CREATE Join Deputy Class proteinsimilar
SELECT {proteinsimilar.name:=protein.name},
{proteinsimilar. GO := protein. GO. transformation
[GO, ;]}
{proteinsimilar.GO1=similar.GO1}
FROM protein, similar WHERE protein. GO. trans-
formation [GO,;]=similar.GO
EXTEND(description:text)

The transformation[GO,;] means that according to
�;� split the GO term. After that, we can get the similar
class. So, object deputy model provides a controllable,
transformable inheritance mechanism to solve semantic
heterogeneous problem. In the next subsection, we will
discuss the semantic data management for efficient se-
mantic search.

Semantic data management

In the figure 2, the relation among protein, relation-
ship, and proteinRelation class is same in figure1. The
class gene and drug both are basic class, which is de-
fined easily according the SQL language in ref.[13].

Figure 3 : Semantic data management in traditional database

TABLE 1 : DB2GO table

ID GO Relation Enzyme Value

001 GO:0003998 similar EC 3.6.1.7 0.9

002 GO:0000210 similar EC3.6.1.23 0.8

003 GO:0004551 Is-a EC 4.1.1.49 true

004 GO:0004612 Part of EC 4.1.1.39 true

005 GO:0004074 Regulate EC 1.3.1.24 true

Figure 4 : Comparison of storage space Figure 5 : Comparison of response time in query 2

.152 Semantic data management in information integration

Regular Paper
RRBS, 4(4) 2010

Cross-links in instance level are available in many biol-
ogy and biomedical domain[10]. There are more com-
plex semantic relations in cross-links, so when it is im-
possible or at least difficult to concrete selection predi-
cates, users can choose to create �imprecise� deputy
class. For example, the imprecise deputy class Cross-
link can be defined as follows.
CREATE Imprecise Join Deputy Class Cross-link
SELECT {Cross-link.protein_id=protein.pro_id},
{Cross-link. drugID=drug.ID}
From drug, protein Extend(relation:string)

The propagation module will not create deputy
objects for the imprecise deputy class automatically.
We define a special syntax to create imprecise deputy
objects manually as follows:
ADD ANY INTO Cross-link FROM protein WHERE
protein_id=976,
With (relation, drug) values(�inhabitor�,�d120�);

According to the syntax, the more complex rela-
tion such as �inhabitor� can be stored. The class cross-
link(gene) is also created using imprecise deputy class.

Please note that it needs primary key and foreign
key to link in the relational model. However, the pri-
mary key or foreign key is hard to define in Cross-link
table, so it must be expand other attribute as primary
and foreign key. Moreover, the join operations will make
system performance lower. But the imprecise deputy
class in object deputy model is based on bilateral point-
ers and inheritance mechanism. So, the query and store
performance is better than relational model.

Semantic query

Semantic search is a key issue in integration of het-
erogeneous biological databases. In this section, we first
propose two kinds of semantic search methods in our
framework, and argue that our method has more ad-
vantage than relational model.

Semantic similarity search

Object deputy database provides a SQL-like lan-
guage[13] which can be used to query classes and their
deputy classes. For example:

Query1

Select all proteins which semantic are similar with
gp120, gp41 and CD4 about HIV and similarity>0.5.

According to the figure2, we can get the informa-
tion through two steps:
1 Select name, GO1 from proteinsimilar where

(proteinsimilar.name=�gp120�or proteinsimilar.
name=�gp41� or proteinsimilar.name=�CD4�) and
proteinsimilar. similar>0.5. The result of GO1:
{GO0078, GO0035, GO0093, GO0095,
GO00135, GO00138, GO0049, GO0097}

2 Select name, GO from protein where protein.GO
like �%GO0078%� �..or protein.GO like
�%GO0097%�.

If in traditional biology database in ref.[12], because it
has no ability to deal with nested attributes structure,
get the same information becomes more complex.
1 Select name, GO from protein where

protein.name=�gp120� or protein.name=�gp41� or
protein.name=�CD4�; The result of GO={GO0078,
GO0035, GO00138, GO0097}

2 Select name, GO1 from similar where
similar.similar>0.5 and (similar.GO=�GO0078��..
or similar.GO=�GO0097�) ; The result of GO1
:{GO0078, GO0035, GO0093, GO0095,
GO00135, GO00138, GO0049, GO0097}

3 Select name, GO from protein where protein.GO
like �%GO0078%� �..or protein.GO like
�%GO00135%�;
From above, we can known that our model have

more convenient semantic search than traditional biol-
ogy database.

Cross-classes semantic search

With a powerful navigation mechanism, our object
deputy database supports the cross-classes query effi-
ciently and conveniently. Since related objects in our
object deputy data warehouse are connected with bi-
directional pointers, it is easy to navigate from one ob-
ject to any of its related objects via these pointers. We
use the symbol �� to represent the navigation be-
tween classes.

Figure 6 : Comparison of response time in query 3

Jun Qiang Liu et al. 153

Regular Paper
RRBS, 4(4) 2010

Definiton 4

Path expression

Let C
b
 be the class from which the navigation be-

gins and C
t
 be the target class. For any object o

b
C

b
,

the expression C
b
C

t
 will return all its connected ob-

ject {o
t
} C

t
. If no target object could be found, the

result will be empty. The expression C
b
C

t
 is called a

�path expression�.
An interesting feature of the semantic path expres-

sion in our object deputy database is that only the �start�
and �target� classes should be explicitly written in query.
Since the deputy relationship forms a directed graph,
one start-to-target class pair determines a unique path.
In this way, the database users can be greatly benefited
from getting rid of understanding perplexing data schema
and expressing complex query. With these features, path
expression makes the query not only simple and easier
to understand but also more efficient to execute. For
example (Figure 2), and experts whose research are
focused on HIV may want to get the semantic similarity
information correlation with drugs information or (and)
genes information.

Query 2

Select all proteins with semantic similarity about HIV,
and drugs correlated with proteins using semantic query
result in Query1.

Select protein.name, drug.name, drug.GO from
protein,drug WHERE protein->drug and cross-
link.relaiton=�inhabitor� and (protein.GO like
�%GO0078%� �or protein.GO like �%GO0097%�);

Query 3

Select all proteins with semantic similarity about HIV,
and drugs and genes correlated with proteins using se-
mantic query result in Query1.

Select protein.name drug.name, gene.name from
drug, gene WHERE (protein->drug or protein->gene)

and cross-link.relaiton=�inhabitor�and (protein.GO like
�%GO0078%� �or protein.GO like �%GO0097%�);

In traditional biology database, the same query will
become much more complex, which involves a lot of
join operations. Due to limited space, we will not write
the query of relational database.

Consistency maintenance

Since attributes and methods of a biological object
are inherited by its deputy objects. So, the data redun-
dancy is avoided in our semantic data structure. When
biological object with semantic are modified, their
deputy objects should be changed accordingly. Object
deputy model can provide object update propagation
mechanism to maintain their consistency. That is, when
a biological object with semantic is added, its deputy
objects may be created automatically according to se-
mantic constraints, when a biological objects is deleted,
its deputy objects will be deleted; when a biological
object is updated, the biological objects must be up-
dated.

Thus, our biological data management system can
classify the consistence of semantic objects dynami-
cally. For example, the insertion of a biological object
name=�gp120�, pro_id= �35�, GO=�GO0078;
G00093�in protein, it will create deputy objects auto-
matically in the proteinsimilar class. If we delete it from
protein, then all related objects will be automatically
deleted. If name= �gp120� is changed, the name of
deputy objects will be changed.

Experiment and analysis

In this section, we will evaluate performance of se-
mantic search using the Query 2 and Query 3 in the
semantic query section, and storage cost under the same
environmental setting.

The experiment runs on a Celeron machine which
has 3.0 GHz CPUs, 1000MB main memory, and

Figure 7 : Capability of transaction processing

.154 Semantic data management in information integration

Regular Paper
RRBS, 4(4) 2010

RedHat Linux 9.0 system. The traditional biology data
warehouse in ref.[12,17] called BioDW are implemented
using PostgreSQL database for comparison purpose.

We have done tests based on 10 data sets extracted
from biology data sources in BioDw[12,17] system and
TOTEM database management system. The sizes of
data sets are from 1M to 10M objects. The x-axis rep-
resents the number of objects and the y-axis represents
the relevant costs. In biology database, the values of
attributes are inherited without occupying much stor-
age spaces. Although the virtual attribute does not oc-
cupy the storage space, the schema information for
deputy classes and the bilateral links between objects
and their objects need be stored. Therefore, the stor-
age space consumed by TOTEM should be close to
traditional biology database. The experiment result as
shown in figure 4 proved our analysis.

From figure 5 and 6, we can see that TOTEM has
great advantages than BioDw[12,17] in response time. In
biology system, many queries need to obtain semantic
relationship from different tables. In BioDw, it needs to
join many tables, while in TOTEM; the bidirectional
path expression can avoid the time-consuming join op-
erations. The Query3 is more complex than Query 2,
so, our approach is more robust to support complex
path query.

TPC Benchmark is an on-line transaction process-
ing (OLTP) benchmark approved by TPC (Transac-
tion Processing Performance Council) for testing the
business biology application. We adopt TPC-C v2.1.0,
which simulates a complete computing environment
where many users execute transactions against biology
databases.

Based on the semantic data management in figure
2, we designed some typical query examples as de-
scribed below.

Query 4

Select all proteins with semantic similarity about HIV.

Query 5

Select all proteins with semantic similarity about HIV,
and drugs correlated with proteins, and the name of
drug is MT2.

Query 6

Select all proteins with semantic similarity about HIV,
and genes correlated with proteins, and the name of

gene is CCR5.

Query 7

Select all proteins with semantic similarity about HIV,
and drugs and genes correlated with proteins, and the
name of drug is ZDV.

Query 8

Select all proteins with semantic similarity about HIV,
and drugs and genes correlated with proteins, and the
name of gene is SDF.

In figure 7a, x-axis denotes five queries, and y-axis
records the number of successful transactions executed
in three hours of each query. In figure 7b, proportion =
transactions in TOTEM divided by transactions in
BioDW. We can get the conclusion that TOTEM works
better than BioDw in almost every query. Although the
two systems have similar efficiency on executing simple
queries, Totem shows huge predominance when the
query is complex and involves a lot of classes or rela-
tions, especially, in Query 7 and Query 8, the propor-
tion is approximately 4. So, our path query is more
robust and efficient than join operator in BioDw.

So we can come to the conclusion from the result
of the above experiment that:
1 In the aspect of the storage space consumed, the

performance of our system is close to that of the
system on BioDw, which is common used in biol-
ogy system.

2 When there are more classes in semantic search,
both the response time and capability of transaction
processing of our system are obviously excelled that
of traditional biology database.

CONCLUSION

In this paper, we have presented a semantic search
framework which adopts the object deputy model to
store semantic data of biological sources. In our frame-
work, it is easy to semantic search in terms of bi-direc-
tional pointers between object and deputy objects, not
only having good storage performance, but also im-
proving the performance of semantic search. We be-
lieve that the presented approach could be easily
adapted to various semantic data management solu-
tions for semantic query and analysis. The experiment
results show that our approach is more feasible and
efficient than the traditional one.

Jun Qiang Liu et al. 155

Regular Paper
RRBS, 4(4) 2010

REFERENCES

[1] F.Bry, P.Kroger; �A Computational Biology Data-
base Digest: Data, Data Analysis, And Data Man-
agement�, In: Distributed and Parallel Databases,
Kluwer Academic Publishers Hingham, MA, USA,
7-42, January (2003).

[2] G.D.Schuler, J.A.Epstein, H.Ohkawa, J.A.Kans;
Methods Enzymol., 266, 141-62 (1996).

[3] E.M.Zdobnov, R.Lopez, R.Apweiler, T.Etzold;
Bioinformatics, 18(8), 1149-1150 (2002).

[4] B.Boeckmann, A.Bairoch, R.Apweiler, M.C.Blatter,
A.Estreicher, E.Gasteiger, M.J.Martin; Nucleic
Acids Res., 31(1), 365-370 (2003).

[5] S.L.Cao, L.Qin; �Applications of Gene Ontology in
Bio data Warehouse�, In: Proc.6th l Bio.Ontologies
Meeting, Brisbane, Australia, 33-36 (2003).

[6] M.Ashburner, C.A.Ball, J.A.Blake, D.Botstein,
H.Butler, J.M.Cherry, A.P.Davis; Nature Genet.,
25(1), 25-9 (2000).

[7] Z.Peng, Y.Kambayashi; �Deputy Mechanisms for
Object-Oriented Databases�, Proc. of IEEE 11th

Int.Conf. on data Engineering, 333-40 (1995).
[8] M.Francisco Couto, Mario J.Silva; Data & Knowl-

edge Engineering, 9, 54-78 (2006).
[9] Zhiyong Peng, QingLi, IEEE Transaction on Data

Knowledge and Engineering, 9, 124-135 (2005).

[10] Hong-Hai Do, Erhard Rahm; �Flexible Integration
of Molecular-Biological Annotation Data�, The
GenMapper Approach, EDBT, lncs., 2992, 811-822
(2004).

[11] B.MC, M.HN, S.G, M.GT; �Spins: Standardized
Protein NMR Storage�, A data Dictionary and Ob-
ject-Oriented Relational Database, October (2002).

[12] CAO Shun-Liang, QIN Lei; Acta Biochim.
Biophys.Sin., 36(5), 365-370 (2004).

[13] B.Zhai, Y.Shi, Z.Peng; �Object Deputy Database
Language�, In: The 4th International Conference on
Creating, and Collaborating through Computing,
January (2006).

[14] H.Huang; �Iproclass: An Integrated Database Of
Protein Family Classification, Function And Struc-
ture Information�, In Nucleic Acids Research, 31,
390-392 (2003).

[15] M.G.Hicks, C.Kettner; �Amaze: A Database Of
Molecular Function,Interactionsand Biochemical
Processes�, In: Proceedings of the Beilstein-Institut
Workshop, May (2002).

[16] J.T.Mieg, D.T.Mieg, L.Stein; �Acedb: A Genome
Database Management System�, In: Computing in
Science and Engineering, 1(3), 44-52, June (1999).

[17] Ann-Ping Tsou, Yi Ming Sun; IEEE Transaction on
Information Technology in Biomedicine, 10(3), 550-
558 (2006).

