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ABSTRACT

Semantic data management is akey issuein integration of heterogeneous
biological data. Traditional database system is not suitable for complex
semantic datamanagement. Moreover, most of the biol ogical data manage-
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ment systems cannot provide efficient semantic search over database. In
this paper, we present a data warehouse which adopts the object deputy
model to store semantic biological data. Most important of all, we can
provide more convenient and efficient semantic search for users. The ex-
periment results show that our approach is more feasible and efficient than

the traditional one.

INTRODUCTION

Many biological and medical applicationsrequire
accesstoavariety of molecular biological objects, such
asgenes, proteins, ther interre ationshipsand functions,
etc. Theseobjectsare maintained in ahigh number of
diverse web-accessi ble data sources. However, the
highly distributed and heterogeneous characteristics of
biological databasesmakeitinconvenient greatly tore-
trieve needed semanticinformation from different data
sources?. Semantic datamanagement isoneof thegreat
chdlengesconfronting theintegration of biological data
It dso remainsachdlengefor themgority of biologica
researcher on how to carry out the semantic searchin
those heterogeneous data sourcesin arapid and effi-
cient way.

Thereare mainly two approacheswhich appeared
inthe literatureg23511121416l Qne gpproachl® is that
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only storesemantic sSimilarity tableand biologica data
using relational database and usingthetermin GO to
search semantic similar proteins. Another approach,
AceDB! has the advantages of accommodation to
irregul ar objectsand good schemaextens onfor classes.
However, it possesses|essflexibility on describing the
rel ationships between objects and classes.

For this purpose, many renowned bioinformatics
centers have presented their own solutions. Thereare
someinformationintegration sysemssuch asthe Entrez
system developed in NCBI™, the sequenceretrieval
system (SRS) of EBI® and so on. The advantage is
that they consider cross-references between sources.
However, most of them am at theheterogeneity of struc-
ture, hardly focusing on theintegration of the content of
datafrom different databases.

In order to manage semantic heterogeneity in bio-
logical datawarehouse systems, using ontol ogy for the
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explication of implicit knowledge becomesan approach
to provide semantic search. But semantic search based
onrelation mode > hasal ot of join operationswhich
aretime-consuming very much. Moreover, only simi-
larity relation between ontology can beexpressedin
ref 112 so that the capacity of semantic searchislimited.

In this paper, a new semantic data warehouse
based on object deputy model has been devel oped.
The system make aclear distinction between dataand
semantic of the data (ontology), and takeinto account
semanti ¢ correspondence between ontol ogies. Map-
pings such as DB2GO(mapping from other biology
ontol ogy to Gene Ontology), consists of al kinds of
semantic relationship(including smilarity, Is-a, and so
on) and isbetter than*2. The construction of seman-
ticrelationtableisto record al kinds of relationship
and similarity scores derived from any pair of GO
terms, and cross-referencein instance-level can solve
the problem of cross-classesquery with semantic. Mot
important of all, in our framework, it is easy to se-
mantic searchintermsof bi-directional pointersbe-
tween obj ects and deputy objects, not only saving a
mass of storage space, but also having higher perfor-
mance of semantic search.

Object deputy modd

Object deputy modd™ can stisfy the requirements
semming from complex, high performancebiology deta
managementswith the concepts of deputy objectsand
deputy classes. In this section, we adopt the object
deputy model to describe the biology data manage-
ment.

The object deputy mode wasat first introduced by
the authorsfor the unified realization of object views,
roles, and migration”. Biology dataconsist of thedata
entity and semantic rel ations between these entities.
Definition 1

Each biology object hasan identifier and someat-
tributes. The schemaof biology objectswith thesame
attributesisdefined asaclassC =<0, A>.

1 istheextent of C, oeOisoneof instancesof C

2 Aistheset of atributedefinitionsof C, (T, : @) €A,
whereT_and arespectively represent typeand name
of an attribute. Thevalueof attributeaof scientific
object o is expressed by o0.a. For each attribute,
therearetwo basic methods.

read(o, @) = To.a, write(o, 3, v) =0.a:= V.

Here=, Tstand for operationinvoking, result returning.

Definition 2

A deputy biology object isderived from object(s)
or other derived object(s). Thelatter iscalled source
object(s) of the former. Source objects and derived
objectsarelinked by bi-directional pointers between
them. Deputy objectshavetheir own persistent identi-
fiers, and can inherit someattributesfrom their source
obj ectsby switching operationswithout occupying stor-
age space, and can also add their additional attributes.
A deputy class definesthe schemaof deputy objects
withthesameaittributes. Let C>= <O, As>beasource
class, its deputy class C! is defined as C!= <O,
Ad*Ad+>'

1 Deputyobject O={0* | o >0 | ... x0°x... |
{0}, () | jp(..xosx..) | gp{o}) = =
true}, istheextent of C, whereo® - o° | ...x0°
oo | {o°} denote o° is a deputy object of

0°,...x0°% x..., or {0}, and sp, jp, gp represent

selection, combination, and grouping predicatere-

Spectively.

AYUA“ istheset of attribute definitionsof C.

3 (Ta: &) eAdistheattributesinherited from (Tas:
&) e As, and atribute valuesof derived object o?are
computed through switching operationsthat need
to read attribute val uesof source objects. Switching
operation for theread method of these attributesis
definedas.

read(o?, &)= T fTes >Ta (read(cs, &). (Ta,

&' )eA? istheadditiond attributesof C, of which ba-

scmethodsaredefined as:.

read(c?, &) = T ot &, write(o”, &, v¢ ) = o%. &,

=ve,

According to above definitions, during the course
of each query, attribute values of deputy biology ob-
jectsinherited from source objectsarestill computed
through switching operationsthat need to communicate
with theunderlyinginformation source.

Definition 3
Update propagation between biology objectsand
their deputy objects.
1 If abiology object oisadded into classC, then all
of deputy classesof C arechecked. If o satisfiesthe
predi cate of somedeputy class CY, an object o of

Cdis created as a deputy object of 0. Deleting a
biology object causes deletion of all of its deputy

N
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objects.

2 If abiology object oinclassCisupdated, al of its
deputy objectswill be updated automatically. Sup-
pose that there are some deputy classes of C, of
which predicatesmight not be satisfied by o before
the update and may become satiabl e after the up-
date, new deputy objectsof o can beadded to these
classes. Modification of an object may causedele-
tion of itsdeputy objects.

Based on the object deputy model, we haveimple-
mented adatabase system called TOTEM and designed
an object deputy database language which can create
various kinds of deputy classes, including
SdlectionDeputyClass, JoinDeputyClass, Union Deputy
Class, and GroupDeputyCl ass.

Biology information

Theamount of molecular biology dataavailableon
lineincreasesdramatically in afew years. Despitethe
abundance of data, the understanding of thesedatalags
far behindthe collection. A key question that molecular
biologiststry to understand isthe protein interaction
mechanism, i.e. why thevariationin proteinscan lead
to diseases such asHIV (Human Immunodeficiency
Virus).

In order to manage semantic datain biologica da
tabase systems, the meaning of theinterchanged in-
formation hasto be understood acrossthe systems.
Using ontology for the explication of implicit knowl-
edge becomes an approach to overcome the seman-
tic heterogeneity. By capturing knowledge about a
domaininakind of shareable, computationally acces-
sible and computabl e semantics about the domain
knowledge they describe, ontol ogy providesamodel
of conceptsthat can beused to formasemantic frame-
work for many data storage, retrieval and analysis
tasks.

Themost popular ontology usedinbiology fieldis
Gene Ontology (GO). GO providesastructured con-
trolled vocabulary of geneand protein biologica roles,
which canbeapplied to different species. GO describes
gene productsfrom three orthogonal taxonomies or
aspects. molecular function, biologica processand cdl-
[ular component[6]. Thesevocabulariesand their rla
tionshipsarerepresented in theform of directed acy-
clicgraphs(DAG). Weuse GO asatool for biological
clustering and constructing DB2GO classto corrd ate
GO annotated entriesfrom datasourceswith GO terms,
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and providesemantic smilarity classtorecord similar-
ity scoresderived from any pair of GO termsand cross-
link and cross-link(gene) classto record the correla-
tionininganceleve.

A semantic data management example

Inthissection, wegive an exampleof the semantic
datamanagement system. Consider theexampleof a
pharmaceutica researcher whowantsto research drugs
to combat HIV.

The HIV is composed of two RNA strands en-
casedinaprotein envelope. Thevira envelopehas2
proteins, named gp120 and gp41. Thegpl20 bindsto
CD4, areceptor protein on atype of whiteblood cell,
caled CD4+ T cells. Thegp41 then causesthefusion
of theHIV withtheT cell. After thevirushas merged
withacell, thevird RNA isinsertedinto the cytoplasm
of thecell. Eachvirus particlehas 2 copiesof an RNA
genome, which aretranscribed into DNA intheinfected
cell andintegrated into the host cell chromosomewith
the help of an enzyme called reversed transcriptase.
Theviral RNA copiesitsalf intothe DNA of thecell,
causing thecell to produce moreof theviral RNA. The
RNA transcriptsproduced fromtheintegrated vird DNA
serveboth asmRNA to direct the synthesisof thevira
proteinsand later asthe RNA genomes of new viral
particles, which escape from the cell by binding from
the plasmamembrane, eachinitsown membraneen-
velope. For more details on how HIV operates, you
can see (http://www.niaid.nih.gov/factsheets/
howhiv.hom).

A researcher may first find dl related proteinsusing
sequence alignment method to aprotein that isknown
to beinvolved in adisease process, such as gp120,
gp41 or CD4. Second, he may want tofind all drugs
correlated with these proteins and know about what
happened in gene. However, sequence alignment
method hascertain limitationsthat are compounded by
theincreasing size of thetarget database: Sequences
containing many repetitived ementsor LCR (Low-com-
plexity regions) arelikely to producefal se positiveor
seemingly unrdated matches. Semanticamilarity search
based on molecular biology functionsisabetter method
for semantic search.

Semantic data management

In this section, we use the example aboveto ex-
plain our framework. Thissystem canretrievethe cor-



150

Semantic data management in information integration

RRBS, 4(4) 2010

Regular Paper ==

Glr EC Relation Waliie
protein ON0TE EC 3.1 similar (8 R}
: similar AGOND0T S | o e ] similar 0.3
pro_id | name | sequence GO SO0003
E B33 Is-a true
76 gpl2d| MKEK GODOT By GODOS3 (&8 D E] EC 34 Pari-of true
GO0003 EC 3.5 Repulate true
T T R —
proteinsimilar l l l J' T -

BEgUanoe £ description
dezscriptionl
description?®
deseription3
descriptiond
de=scriptions

Source Deputy Extend
atiribute atiribute v i
Pointer to source -— —_— Pointer to deputy
Figurel: Semanticintegration
Feelutionshiz proteinfelation
a0 Pelnion EC Eelaticn | descr —
GOOOTH similas EC 3
GOOOTH similae [ e G
(RN similur EC 33 epl M GEGHTRGOO0
E‘Egiu 1L1ﬂr :; ;: 431 | Gon: Goneas: .
o i Ar=o| .| -
TI53 GOODGS
GO Repulat EC 34
- - == 1004]  GODDISE: GOnbak
Gn013E REat e CES | GOOOS:GO0023: s
GONH3R Part-of EC 38 Ol GOOR 1R
Goon13 Mo ECI® aphl GOAT
GOODT Partof EC 41 mhS GOOMa [
133 GONNa2
i Crossink
wruglll A il wrugll usa Prateing_id
] 12 Qo021 GOR33
3 T G
a7 STl GOOH352
a1 ATA [FTEL rf-
dii3 736 Gon3 |
dins 7NV EEa
diig SMN GonT2
|20 EIS Gie?
Crosink
L m s it GO cenelld miANA Pratein_id
gl6s CCRE Zicom ON03 1 GODRE= 3
=68 SDF Famsa GO GOODET [
Fikd] OOz et G5 3
Source 4 Extend
attribute I:Inumu Al - attribute

Painter b source - —_—

Pointer to depusty

Figure2: Semantic datamanagement

relation datafrom different sourcesthrough the proce-
dureof dataextracting, transforming and cleaning as
described in®. By using GO as atool for biological
clustering and constructing DB2GO tableto corrd ate
GO annotated entriesfrom datasources. By construct-
ing DB2GO, the entriesin the member databasesare
linked to theterms of Gene Ontol ogy Database organi-
cally. IntheDB2GO table, itisquite easy tofind en-
tries, which are all annotated by the same GO term,
from different databases. Sinced| theseentriesarean-
notated by the same GO term, they are semantically
identified, and thusthe semantic heterogeneity between

databasesispartialy resolved. Various measures have
been devel oped for quantifying the semantic similarity
intermsof ontology. In order to carry out the compari-
son of semanticsimilarity in aconvenient way, wecal-
culatethesimilarity of every pair of termsin GO (each
term correspondswith anodein the DAG of GO) ac-
cording to the algorithm® and experts, and then store
theresultsinto the semantic Smilarity tableasfollows.

Thedifference between our approach and paper'd
isthat thereisonly similarity between ontology inf*?,
whereastherearemany semantic rel aionshipsasshown
intable DB2GO in our system.
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M odeling semanticinformation by relational data
model need multipletables and thesetables must be
linked using primary key and foreign keys. Obj ect-ori-
ented datamodel can be used to define complex se-
mantic objects. Objectswith the same attributes and
methods can bedefined by aclass. Most of object ori-
ented databases restrict that each objectisadirect in-
stance of only oneclassand indirectly belongsto al
super-classes of thisclass. That is, an object cannot
residesimultaneoudy intwo classeswhich arenot re-
lated by a sequence of IS-A relationships. The com-
plex semantic datacomprises of al kindsof relations
(IS-A, Part-of, Regulate, and so on), soit’shard to be
stored in obj ect-oriented databases. In addition, data
redundancy and cons stency maintenance area so greet
handicap. Object deputy model can overcome the
aboveproblemsinthefollowing.

Semanticintegration

We can get the DB2GO tablefrom data sources,
such as protein from swissprot!, and get thesimilar
classiscomputed according to thealgorithmin®, and
the objects value of cross-link and cross-link(gene)
classareget from*, All DB2GO tablesabout proteins
areunion asprotein classin our system. Thedatadown-
|oaded from data sources cons stsof multiple semantic
values. How to mergewith similar tableinfigure1is
difficultinreationd modd or object oriented datamodd.
The nested attribute structure (one ontol ogy may has
many similar ontology, so many ontologiesformthe

—> Regulor Peper
TABLE 1: DB2GO table

1D GO Relation Enzyme Value
001 G0:0003998 similar EC 3.6.1.7 0.9
002 GO0:0000210 similar EC3.6.1.23 0.8
003 GO0:0004551 Is-a EC4.1.1.49 true
004 GO0:0004612 Part of EC4.1.1.39 true
005 GO0:0004074 Regulate EC1.3.1.24 true
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Figure5: Comparison of responsetimein query 2

nested structure) isnot supported effectively ininfor-
mation integration using relational model, and object
oriented model isnot enough for informationintegra-
tion becauseit hastwo serious problems. It can only
provide subclass constructor and support inheritance
from super-classto subclass. Information integration
needs not only specialization but ad so aggregation. The
JoinDeputyClass using object deputy modd can solve
theproblem.

CREATE Join Deputy Classproteinsmilar
SELECT { proteins milar.name:=protein.name}
{proteinsimilar. GO := protein. GO. transformation
[GO,: |}

{ proteingmilar.GO1=smilar.GO1}

FROM protein, similar WHERE protein. GO. trans-
formation[GO,;]=amilar.GO
EXTEND(description:text)

Thetransformation[GO,;] meansthat according to
“” gplit the GO term. After that, we can get thesimilar
class. So, object deputy mode providesacontrollable,
transformabl einheritance mechanismto solvesemantic
heterogeneous problem. Inthe next subsection, wewill
discussthe semantic datamanagement for efficient se-
mantic search.

Semantic data management

Inthefigure 2, therd ation among protein, relation-
ship, and proteinRelation classissameinfigurel. The
classgeneand drug both are basic class, which isde-
fined easily according the SQL language in ref.[*3,
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Figure6: Comparison of responsetimein query 3

Cross-linksininganceleve areavailableinmany biol-
ogy and biomedical domaini*9. There are more com-
plex semantic relaionsin cross-links, sowhenitisim-
possibleor at least difficult to concrete selection predi-
cates, users can chooseto create “imprecise” deputy
class. For example, theimpreci se deputy class Cross-
link can bedefined asfollows.

CREATE Imprecise Join Deputy Class Cross-link
SELECT { Cross-link.protein_id=protein.pro_id},

{ Cross-link. druglD=drug.ID}

From drug, protein Extend(rel ation:string)

The propagation module will not create deputy
objectsfor theimprecise deputy classautomatically.
Wedefineaspecia syntax to createimpreci se deputy
objectsmanudly asfollows:

ADDANY INTO Cross-link FROM protein WHERE
protein_id=976,
With (relation, drug) values(’inhabitor’,’d120°);

Accordingto the syntax, the more complex rela-
tion such as“inhabitor” can be stored. Theclasscross-
link(gene) isa so created using impreci sedeputy class.

Please notethat it needs primary key and foreign
key tolink intherelational model. However, the pri-
mary key or foreign key ishardto definein Cross-link
table, soit must be expand other attribute as primary
andforeignkey. Moreover, thejoin operationswill make
system performance lower. But theimprecise deputy
classin object deputy model isbased on bilaterd point-
ersand inheritance mechanism. So, thequery and store
performanceisbetter than relational model.

Semanticquery

Semantic searchisakey issueinintegration of het-
erogeneoushbiological databases. Inthissection, wefirgt
propose two kinds of semantic search methodsin our
framework, and argue that our method has more ad-
vantagethan relational model.

Semantic similarity search

Object deputy database providesa SQL-likelan-
guage™® which can be used to query classesand their
deputy classes. For example:

Queryl
Select dl proteinswhich semantic aresimilar with
gp120, gp41 and CD4 about HIV and similarity>0.5.
According to thefigure2, we can get theinforma:
tion through two steps:

1 Select name, GOL1 from proteinsimilar where
(proteinsimilar.name="gp120’or proteinsimilar.
name="gp41’ or proteinsmilar.name="CD4’) and
proteinsimilar. similar>0.5. The result of GO1.:
{GO0078, GO0035, GO0093, GO0095,
G000135, GO00138, GO0049, GO0097}

2 Select name, GO from protein where protein.GO
like ‘%GO0078%’ ..... or protein.GO like
‘%G0O0097%’.

If intraditional biology databasein ref.*3, becauseit

hasno ability to deal with nested attributes structure,

get the sameinformati on becomesmore compl ex.

1 Select name, GO from protein where
protein.name="gp120’ or protein.name="gp41’ or
protein.name="CD4’; Theresult of GO={ GO0078,
GO0035, GO00138, GO0097}

2 Select name, GOl from similar where
amilar.samilar>0.5and (Smilar. GO="GO0078".....
or similar.GO="G00097’) ; The result of GO1
:{GO0078, GO0035, GO0093, GO0095,
G0O00135, GO00138, GO0049, GO0097}

3 Select name, GO from protein where protein.GO
like ‘%GO0078%’ ..... or protein.GO like
‘%G000135%’;

From above, we can known that our model have
more convenient semantic search than traditiona biol-
ogy database.

Cross-classes semantic search

With apowerful navigation mechanism, our object
deputy database supportsthe cross-classes query effi-
ciently and conveniently. Sincerelated objectsin our
object deputy datawarehouse are connected with bi-
directiona pointers, it iseasy to navigatefrom oneob-
jecttoany of itsrelated objectsviathese pointers. We
use the symbol “—” to represent the navigation be-
tween classes.
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Definiton 4
Path expression

Let C, bethe classfrom which the navigation be-
ginsand C, bethetarget class. For any objecto,eC,,
theexpression C —C, will returnall its connected ob-
ject{o} C. If notarget object could be found, the
result will beempty. Theexpression C—C iscaleda
“pathexpresson”.

Aninteresting feature of the semantic path expres-
soninour object deputy databaseisthat only the“’sart”
and “target” classesshould beexplicitly writtenin query.
Sincethedeputy relationship formsadirected graph,
one start-to-target classpair determinesaunique path.
Inthisway, the database users can be greatly benefited
from getting rid of understanding perplexing dataschema
and expressing complex query. With thesefeatures, path
expression makesthe query not only smpleand easier
to understand but al so more efficient to execute. For
example (Figure 2), and expertswhose research are
focused on HIV may want to get the semantic Smilarity
information correl aionwith drugsinformation or (and)
genesinformation.

Query 2

SHectdl proteinswith samantics milarity about HIV,
and drugscorrd ated with protensusing semantic query
resultin Queryl.

Select protein.name, drug.name, drug.GO from
protein,drug WHERE protein->drug and cross-
link.relaiton="inhabitor’ and (protein.GO like
‘%G0O0078%’ ...or protein.GO like ‘%G0O0097%);

Query 3

Sdectdl proteinswith semantic s milarity about HIV,
and drugsand genes correlated with proteinsusing se-
mantic query resultin Queryl.

Select protein.name drug.name, gene.namefrom
drug, gene WHERE (protein->drug or protei n->gene)

and cross-link.reaton="inhabitor’and (protein.GO like
‘%G0O0078%’ ...or protein.GO like ‘%G0O0097%);

Intraditional biology database, the same query will
become much more complex, which involvesalot of
joinoperations. Dueto limited space, wewill not write
thequery of relational database.

Consistency maintenance

Sinceattributesand methods of abiologica object
areinherited by itsdeputy objects. So, the dataredun-
dancy isavoided in our semantic datastructure. When
biological object with semantic are modified, their
deputy obj ects should be changed accordingly. Object
deputy model can provide object update propagation
mechanismtomaintaintheir consstency. Thatis, when
abiological object with semanticisadded, itsdeputy
obj ects may be created automatically accordingto se-
mantic congtraints, when abiological objectsisde eted,
its deputy objectswill be deleted; when abiol ogical
object isupdated, the biologica objects must be up-
dated.

Thus, our biologica datamanagement system can
classify the consi stence of semantic objects dynami-
cally. For example, theinsertion of abiological object
name="gp120”, pro_id= ‘35’, GO="G0O0078;
G00093”in protein, it will create deputy objectsauto-
maticalyintheproteinamilar dass. If weddeteit from
protein, then all related objectswill be automatically
deleted. If name= ‘gp120’ is changed, the name of
deputy objectswill bechanged.

Experiment and analysis

Inthissection, wewill evaluate performance of se-
mantic search using the Query 2 and Query 3inthe
semantic query section, and storage cost under thesame
environmenta setting.

The experiment runson aCel eron machinewhich
has 3.0 GHz CPUs, 1000MB main memory, and
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RedHat Linux 9.0 system. Thetraditiond biology data
warehouseinref.[121 called BioDW areimplemented
using PostgreSQL database for comparison purpose.

We have donetests based on 10 data setsextracted
from biology data sourcesin BioDw!'2" system and
TOTEM database management system. The sizes of
datasetsarefrom 1M to 10M objects. Thex-axisrep-
resentsthe number of objectsand they-axisrepresents
therelevant costs. In biology database, the val ues of
attributes areinherited without occupying much stor-
age spaces. Although thevirtua attribute does not oc-
cupy the storage space, the schemainformation for
deputy classesand thebilateral linksbetween objects
and their objects need be stored. Therefore, the stor-
age space consumed by TOTEM should be closeto
traditiona biology database. The experiment result as
showninfigure4 proved our anaysis.

From figure5 and 6, we can seethat TOTEM has
great advantagesthan BioDw!*217 in responsetime. In
biology system, many queries need to obtain semantic
relationship fromdifferent tables. In BioDw, it needsto
join many tables, whilein TOTEM; the bidirectional
path expression can avoid thetime-consumingjoin op-
erations. The Query3ismorecomplex than Query 2,
S0, our approach ismore robust to support complex
path query.

TPC Benchmark isan on-linetransaction process-
ing (OLTP) benchmark approved by TPC (Transac-
tion Processing Performance Council) for testing the
businessbiology application. We adopt TPC-Cv2.1.0,
which simulates acompl ete computing environment
wheremany usersexecute transactionsagainst biology
databases.

Based on the semanti c datamanagement infigure
2, we designed some typical query examples as de-
scribed below.

Query 4

Sdectdl proteinswith samantics milarity about HIV.
Query 5

Sdectdl proteinswith semantics milarity about HIV,
and drugs correlated with proteins, and the name of
drugisMT2.
Query 6

Sdectdl proteinswith semantics milarity about HIV,
and genes correlated with proteins, and the name of

geneisCCRS.

Query 7
Sdectdl proteinswith semanticamilarity about HIV,

and drugsand genes correlated with proteins, and the
nameof drugisZDV.

Query 8

Sdect dl proteinswith semanticamilarity about HIV,
and drugsand genes correlated with proteins, and the
nameof geneisSDF.

Infigure7a, x-axisdenotesfivequeries, and y-axis
recordsthe number of successful transactionsexecuted
inthree hoursof each query. Infigure 7b, proportion=
transactions in TOTEM divided by transactions in
BioDW. We can get the conclusionthat TOTEM works
better than BioDw in amost every query. Although the
two sysemshavesmilar efficiency onexecutingsmple
queries, Totem shows huge predominance when the
query iscomplex andinvolvesalot of classesor rela
tions, especially, in Query 7 and Query 8, the propor-
tion is approximately 4. So, our path query is more
robust and efficient than join operator in BioDw.

So we can cometo the conclusion from theresult
of theabove experiment that:

1 Intheaspect of the storage space consumed, the
performance of our system is closeto that of the
system on BioDw, which iscommon used inbiol-
ogy system.

2 When there are more classesin semantic search,
both the responsetime and capability of transaction
processing of our system are obviously excelled that
of traditiond biology database.

CONCLUSION

Inthis paper, we have presented asemantic search
framework which adoptsthe object deputy model to
store semanti c dataof biologica sources. Inour frame-
work, it iseasy to semantic searchintermsof bi-direc-
tional pointers between object and deputy objects, not
only having good storage performance, but alsoim-
proving the performance of semantic search. Webe-
lieve that the presented approach could be easily
adapted to various semanti c data management solu-
tionsfor semantic query and analysis. The experiment
results show that our approach is more feasible and
efficient thanthetraditional one.
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