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ABSTRACT 
 
Image detection is an important technology which has been applied extensively to
geometric measurement, industrial quality inspection, three-dimensional surface detection
and the like. Because most of image detection algorithms are effective for specific
problems so far, there is no detection algorithm can be applied to solve all image detection
problems. Detection of tubular structures in 3D medical images is an important issue for
vascular medical imaging. In this paper, we propose a new adaptive medialness measure
for detection of tubular structures in 3D medical images. The adaptiveness of the
medialness is based on the Hessian matrix of the image, its eigenvectors and eigenvalues.
First we describe the proposed measure of medialness and ridge, Second we use a simple
model of cylindrical vessel with circular Gaussian cross-section to illustrate our detection
solution, meanwhile we give the relationship between the size of the structure and its
selected scales. From this relationship, we explain the extraction of local extrema and
make a full reconstruction of the vessels network. Thirdly synthetic and real images are
used to verify our study under the suggested tubular structures. At last we draw some
conclusions and give some areas for future research. 
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INTRODUCTION 
 
 Detection of tubular structures in 3D images is an important issue for vascular medical imaging. In[1], Koller et al. 
propose a multiscale response in order to detect linear structures in 2D images, the response function uses eigenvectors of the 
Hessian matrix of the image. After that, in[2], Lorenz et al. decided to use further information from the Hessian matrix, that is, 
its eigenvalues. A more recent work done by Sato et al. in[3-8], they also propose to choose a response function based 
exclusively on the eigenvalues of the Hessian matrix. The choice of the response function which combines the three 
eigenvalues is heuristic. Their approach is to provide a visual help in the interpretation of the image after filtering. However, 
the images used in their experiments seem to have a higher spatial resolution than usual images used in clinical practice, and 
their algorithm doesn’t detect vessel axes and doesn’t seem suitable for an accurate estimation of vessel size. In[9-12], Frangi et 
al. propose another response function by interpreting geometrically the eigenvalues of the Hessian matrix. 
 In this paper, we present a new approach for detection of tubular structures in 3D images. A way to take into account 
the varying size of vessels in the image is to apply a multiscale analysis that allows us to detect structures of various sizes 
according to the scale at which they give a maximal response. then we extract the local extrema in this multiscale response in 
order to estimate the vessels centerlines. Afterwards vessels are reconstructed using both the centerlines and the size 
information. Finally synthetic and real images are used to show the behavior of the algorithm under the suggested tubular 
structures. 
 

BASIC CONCEPTS AND THE SUGGESTED MODEL 
 
Linear scale space 
 When applying the approach of multiscale analysis to an image, the use of the convolution product with a Gaussian 
kernel has been shown to be the only way to ensure the following properties: linearity, invariance under translation, 
invariance under rotation and invariance under rescaling[13-15]. Florack and et al.[16]show that the evolution through scales can 
be written using two dimensionless variables L/L0 and /x . denotes the standard deviation of the Gaussian kernel, L0 is 

the response obtained from the initial image and L is the response obtained at a scale 2t  . In this paper[14],Lindeberg 
shows the necessity of normalizing the derivatives of the image in the multiscale analysis. He introduces the notion of  -
normalized derivatives: 
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Medialness and ridge 
 In[17], Eberly and et al. reviewed the different definitions of ridges and their invariance properties. They also 
proposed an extension of the concept of ridges of dimension d in n-dimensional images, which is listed below. 

 If I( x ) is a real-valued function defined for 
nRx ,and H( x ) is the Hessian matrix of I at x . Assuming that the 

eigenvalues of H( x ) are ordered as n 1  with associated eigenvectors ],1[)( niiv  , 
and x  is a ridge point of type n-d 

if and only if 0)(][v1  xIv t
d  and 0d  with nd 1 . 

 In[18-21],the medialness was defined as a convolution product of the initial image with a kernel ),( xK , that is, 

),(*)(),(M  xKxIx  . 
 
Suggested model: cylindrical circular model with gaussian cross-section 
 The suggested vessel model is cylindrical where(Oz)is the vessel axis and the vessel section is a Gaussian blob. In 
this section, we use the following notations: 
 -I0 is the initial image, 
 - 0 denotes the radius of the initial vessel model which is also the standard deviation of a 
 Gaussian, 
 - G is a Gaussian function with standard deviation , 
 -H is the Hessian Matrix of the image, H’ is a simplified matrix proportional to H, 
 - 1 , 2 , 3 are eigenvalues of the Hessian matrix with 321   , 
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 - 321 ,, vvv are the associated eigenvectors. 
 Therefore in this model, there is 
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 Where C is a function of 0  and 
2

02
C represents the intensity at the center of the vessel,described as Figure 1. C 

depends on the size of the vessel, this dependence is due to partial volume effect that decreases the small vessels’ intensity. 
 

 
 

Figure 1 : Suggested model of a vessel 
 

ALGORITHM OF TUBULAR STRUCTURE DETECTION 
 
 Our algorithm can be split into a few steps. First we compute the multiscale response from responses at a discrete set 
of scales, Then we extract the local maxima in this multiscale response in order to estimate the vessels centerlines. In the 
following vessels are reconstructed using both the centerlines and the size information. In the first step, we use a model of the 
vessels both for interpreting the eigenvalues and the eigenvectors of the Hessian matrix and for choosing a good 
normalization parameter. 
 Some notations frequently used in this paper are listed in TABLE 1. 
 

TABLE 1 : Some notations frequently used in this paper 
 

Notation Meaning 

t the current scale 

M( x ) point in the definition domain of the image I0, 3),,(x Rzyx   

)( xR t  the response for a scale t and at a given location x  
n
tR  thenormalized response for a scale t 
  normalized parameter 

maxt  the scale at which thenormalizedresponse is maximal 
)(*)(),( 0 xGxItxL t  the image at a scale t 

G  Gaussian function with standard deviation   
 

Computation of the response tR  at one scale t 

 For a point x , the response is set to the minimum of the absolute value of theintensity’s first order derivative 

computed at 4 points equidistant from x . An advantageof this choice is to ensure that a high response results in a high 
probability of being at avessel’s center, but this medialness response is too sensitive to noise. It seems more naturalto use 

information from the first derivative at every point of a circle than just four points. This circle ),( txC  iscentered at the 

current point x , has a radius t and is in the planedefined by x  and the two eigenvectors 1v and 2v . The proportionality 

constant will bechosen according to the model. This constant is the inverse of the constant 


 1
 alreadyintroduced in[14,15]. 

 Under this condition, we propose to use the following medialness response 
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 With 
21 )sin()cos( vvv   . 
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 This response is the mean of first order derivative information taken at the circle ),x(C t . v is the radial 

direction and 0It  is the gradient vector of the initial image, computed at the scale t. 

 
Computation of multiscale responses 
 One difficulty with multiscale approach is that we want to compare the result of a response function at different 
scales while the intensity and its derivatives are decreasing functions of scale. Lindeberg[14]introduced the notion of 

normalized derivatives in order to deal with this problem. If the scale t is defined as 2t   where  is the standard 

deviation of the Gaussian, the  -normalized derivative   was already defined by equation 1. 

 At a scale t, the cylindrical circular model with a constant C>0 leads to 
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 The calculation process of the maximum of the normalized response n
tR  is listed below. 

 We aim to detect the axis of the vessel which is defined by x=y=0, the response at a point M(0,0,z)is given: 
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 The gradient and the normal vector n are formulated as 
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 The last expression is no longer a function of x , then the mean of this expression along the circle is straightforward, 
and 
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 The normalized response n
tR  is defined by t

n
t RtR 2/ , and its partial derivative on t is: 
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 We are looking for the value of   which gives a maximum for the function n
tR at 2
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have a positive root which corresponds to a maximum. 
 The sign of 
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  is the same as the sign of A, when 3  and the determinant   is also positive, has onlyone 

positive root which corresponds to a maximum for n
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 We find a a relation of proportionality between the scale tmax that gives a maximal response and the initial radius of 

the vessel 0 : 

 
2
0max ),(t h   (11) 

 
 Where h is a function of the normalization parameter   and the proportionality constant  : 
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 With 222 )22(16)]22([   . Usually,  is chosen to allow the response Rt to be maximal for a scale 
corresponding to the size of the structure we want to detect. To keep generality, we establish the relationship between the 

scale tmax where the maximal response is reached and the initial radius 0 of the vessel. This relationship depends on both the 

normalization parameter   and the distance coefficient  . 

 Once we have chosen the two parameters  and , we can deduce two numerical relations for our model. That is,
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 This value is proportional to the intensity of the vessel center when the background intensityis null. n
tR
max

is 

approximately equal to 0.232 times the intensity at the vessel center
2
02

C . 

 
Reconstruction and visualization 
 It is not an easy task to visualize the local extrema image in order to improve the interpretation of the original data 
image. For that purpose, we propose to extract some information from the local extrema image, to superimpose it into some 
3D representation of the original data image or to use it for a vessel network reconstruction. It can be described in detail as 
below. 
 
1) Line extraction 
  In order to obtain the centerlines from the local maxima image, we first binarize the local extrema image by 
applying a hysteresis thresholding. Second, we thin this result to obtain a skeleton-like representation of the vessels. The 
resulting skeleton is composed of pieces of curves, each of them representing a piece of vessel. Third, the skeleton is 
simplified by removing small pieces of curves. The result obtained is an image of the vessel axes. 
 
2) Reconstruction 
  The centerline image also contains information about the size of the vessel, which is proportional to the scale at 
which the current point has been extracted. 
 
3) Visualization 
 In both cases, MIP view or isosurface, the superimposition of the detected 3D centerlines can help the interpretation 
of the real vessel network. Moreover, an isosurface of the reconstructed vessel network has the advantages of an initial image 
isosurface without having its drawbacks, because all vessels are reconstructed with the same centerline intensity. Thus, it can 
help to understand the local structure of the vessels network. 
 

EXPERIMENTS AND RESULTS 
 
 In this section, we present some experiments made on synthetic images and real images. 
 
Experiments on synthetic images 
 The created images have a Gaussian blob cross-section and their difference from the theoretical models lies in their 
discrete representation. 
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Figure 2 : Response obtained at the center of the vessel for different scales 
 

 
 

Figure 3 : Responses obtained for the optimal scales 
 
 As mentioned above, we made some experiments on cylindrical circular vessels with Gaussian cross-section. 
 
(1)Response profile 
 The response profile is the evolution of the medialness response as a function of scale, here taken at the vessel 
center. Figure 2 shows a comparison between thetheoretical and the obtained profiles. In red, the theoretical profile, and in 
blue, the obtained profile. The vertical red line shows the theoretical scale for which the response is maximal The synthetic 
image contains a circular cylinder with Gaussian blob cross-section, radius 3 voxels and intensity equal to 100 at the center. 

The theoretical response profile is given by equation 10where 30  , 1 , 3 and 1002C 2
0   . The experimental 

response profile is obtained from twenty scales ranging from 0.7 to 8. This comparison shows that the two profiles match, 
and that the experimental profile is slightly lower than the theoretical one near the maximal scale. 
 
(2)Normalization 
 The relationship between the vessel radius and the optimal scale is 2

0
2
0max 5.0),(t sh    where s0 is the radius 

of the vessel with Gaussian-like cross-section. The response at the optimal scale and at thevessel center should be equal to 
n
tmax

R times the intensity at the vessel center, described as in equation 13. The initial image of Figure 3 contains four vessels 

with Gaussian blob cross-section and respective radii are 1.25,1.75,2.5,8. 
 We applied the multiscale analysis on this image with 20 scales for vessels radiiranging from 1 to 4 voxels. The 
difference between the obtained maximal responseand the theoretical expected value is stronger for small vessels and is 
probably due tothe trilinear interpolation of the gradient vector during the response computation. Thisdifference remains 
small, below 11%, which confirms the zoom invariant property of thenormalization, and will allow an easy threshold of the 
local extrema image, as shown in Figure3. 
 
Experiments on real images 
 
(1)Image acquisition 
 Our algorithm was tested on a set of images, which are obtained by 3D reconstruction of the vessels from 2D X-ray 
substracted angiographies. Details of the reconstruction scheme can be found in[11]. Compared to the other 3D acquisition 

 

initial image          local extrema

scale   9.03       scale   92.1

scale   6.51      scale   10.1
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modalities which are Magnetic Resonance Angiography and Scanner Angiography, this 3D reconstruction gives a high 
isotropic resolution over the whole reconstructed volume. However, it requires a good opacification of the vascular network 
obtained with an intra-arterial injection. The left images in Figure 4 are MIP views of a typical sub-images centered on an 
aneurysm. They contain different artefacts: noise, partial volume effect, consequences of the patient motion between different 
acquisitions and 3D reconstruction artefacts which lead to a non-homogeneity of the intensity of the vessels for different sizes 
of the vessel. The two right columns of Figure 4 show isosurfaces of the images, where small vessels are only visible with a 
low threshold (surface holes in black are due to the image boundaries). 
 
(2)Choice of parameters 
 We tested our algorithm on ten images 128×128×128 of varying complexity. Because small vessels have a lower 
intensity than bigger ones, we used a parameterγlower than 1 for the normalization. Decreasing the value of γ has the effect 
of enhancing small vessels compared to big ones, and helps to compensate for intensity variations. We used the value 0.75 
for γ. The minimum and maximum scales are chosen according to the radii of the thinnest and the thickest vessels in the 
initial image. The algorithm was run with scales that detect vessels of radii ranging from 0.4 to 6 voxels. Then, after manual 
thresholding, the centerlines extraction takes a few seconds. 
 
(3)Results 
 Results on the three images of Figure 4 are shown in Figure 5. On the left, the detected centerlines are represented 
with an isosurface of the initial image and using transparency. On the right, a surface of the reconstructed network is 
represented, the reconstruction is based on the previous centerlines and the estimated radii. In Figure 6, on the left, detected 
centerlines are superimposed on an isosurface of the initial image. On the right, reconstruction of the vessels network is made 
from centerlines and radii estimation. 
 

 
 

Figure 4 : Top, MIP view and isosurfaces of three X-ray 3D images 
 

 
 

Figure 5 : Results on the images represented in figure 4 
 

CONCLUSIONS AND FUTURE WORK 
 

 We presented a multiscale approach for tubular structures detection in 3D medical images. Our approach used 
gradient information at a given distance of the vessels centers. Using a cylindrical circular model with Gaussian blob cross-
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section, we found the optimal distance for computing gradient information at a given scale, and we also expressed the vessel 
radius as a function of the maximal scale. 
 Next, we proposed an algorithm for extracting centerlines and reconstructing the whole vessels network. 
Experiments on synthetic and real images show the results of the approach according to radius variations for vessels with 
Gaussian cross-sections. 
 There are a number of areas for future research that couldclarify and extend the results of the present study. First, it 
is important to extractthe vessels centerlines in order to ensure their continuity to understand the topology of the vessels 
network. Second, it is an important issue to discriminate between vessel and non-vessel structures. This discrimination is 
present in ouralgorithm at the pre-selection stage based on Hessian matrix eigenvalues and also in the response function that 
enhances vessel centers. However, another discrimination of the local maxima may be necessary when the image contains 
non-vessel structures with high gradients or to remove wrongextrema obtained near the vessels frontiers. Finally, once a good 
detection of the centerlines is obtained, a second andmore precise detection of the vessels contours may be done based on this 
information and without assuming a circular cross-section profile. 
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