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ABSTRACT

Multinomial logistic regression (MLR) and artificial neural networks (ANNS) were employed to seek the quantitative
structure — activity relationships (QSARS) that correlate structural descriptors and inhibition activity of carbonic
anhydrase | X inhibitors. Many quantitative descriptors (n=644) were generated to express the physicochemical
propertiesof 132 compounds with optimized structureswith known ki values. ML R were used to nonlinearly select
different subsets of descriptors and develop nonlinear models for prediction of log (ki). The most significant
parameters were then selected. A neural network model was then constructed and fed by the parameters selected
by MLR. The networks have been trained and tested using the best subset selected by MLR. The best prediction
model was found to be a’5-3-3 artificial neural network which wasfed by the most frequently selected descriptors
among these subsets. Cross-validation and a separate prediction set were used to evaluate the stability and
prediction ability of the established models. Our resultsdemonstrated that descriptors correl ated to autocorrel ations,
topological propertieswere major determinants of inhibition activity of these compounds. Both methodswere able

to significantly describe and predict the CAIX inhibitory activity.

INTRODUCTION

Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze
theinterconversion between carbon dioxide and the bi-
carbonateion, and arethusinvolvedinvita physiologi-
cal processedl. At least four CA isozymes (CA 1V,
CA IX, CA XIlI, and CA XI1V) are associated to cell
membranes, with theenzyme activesitegeneraly ori-
ented extracellularly. Some of theseisozymeswere
shownto play crucia physiological rolessuchasCA
IX may serve as markersfor tumorsand hypoxia?4.
Thecarbonicanhydraseinhibitorsarewiddy studied in
thelast decade, duetotheir potential functionsfor the
avoidanceand treatment of alargenumber of diseases™
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7. Supuran and hisgroup have presented agreat amount
of work inthisfidd®, Sofar, two main classesof CA
inhibitorsarerecognized asthe meta complexing an-
ionsand the unsubstituted sulfonamides. They bind to
theZn (11) ion of the enzyme by substituting the non-
protein zincligand or by adding tothemeta coordina
tion sphereto generatetrigonal -bipyramidal species.
ulfonamides, asthemost important CA inhibitors, bind
inthetetrahedral geometry of Zn (I1) ionin deprotonated
date; whereasmetal-complexing anionsarewesk CAIS,
with afinitiesgeneraly inthemillimolar range. Thearo-
metic sdechansof sulfonamideinhibitorsinteract with
thehydrophobicamino acid resduesinthebinding site
e.g. Phel31, Leul4l, Va143, and Alad5 and stabilize
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theinteraction'9,

Theapplication of computational methodsfor de-
signing biologically active compounds hasrecently in-
troduced anew approach to modern drug discovery
research. Computational methods can moveforward
the procedure of discovering new drugsby designing
new compoundsand predict their potency or activity.
Different kindsof statistical model ssuch asregression
andysesand artificia intelligencebased mode ssuchas
neural networks can be used astechniquesfor feature
selectionto devel op QSAR models. Indeed predictive
ability of such modelscan beappliedto estimateactiv-
ity of the designed moleculesbeforetheir synthessand
assay inlaboratory. Inthisway, theresearch cost can
be minimized. QSAR modelsare mathematical equa
tionsthat provide comprehensive knowledge onthe
mechanism of biologica activity of compoundsby es-
tablishing ardationship between chemicd sructuresand
their biologicd activities. Molecular descriptorsplay an
important rolein devel oping QSAR modd sand finding
aset of molecular features affect thebiologica activity
of interest isthe essentia part of modeling procedurein
QSAR analysest. Molecular descriptors are deter-
mined through the production of thefeatureswhich are
numerica va uescorresponding to topol ogical, geomet-
ric, constitutiona or and quantum chemicd features?.
The derived relationshi ps between molecul ar descrip-
torsand activity are used to estimate the property of
other moleculesand/or finding the parametersaffecting
thebiologica activity.

Carbonic anhydraseinhibitorswerestudied by many
authorsthrough quantitative structure-activity relation-
shipgd*?29, |In thisstudy, we used Multinomial Logistic
Regression (MLR) and artificial neural networks
(ANNS) as nonlinear models to search the QSAR
benzenesulfonamides derivativesasinhibitors CAIX.
Initialy, weused MLR for sdlecting more effective de-
scriptors and to obtain an equation for prediction of
inhibition activity. Then, according to theseresults, we
deve oped neurd networkswith different input patterns.
MLR comparesmultiplegroupsthrough acombination
of binary logistic regressions. The group comparisons
are equiva ent to the comparisonsfor adummy-coded
dependent variable, with the group with the highest nu-
meric score used as the reference group. The math-
ematical adaptability of ANNsacclamsthem asapow-
erful tool for pattern classification and building predic-

tivemodels. A particular preference of ANNsistheir
ability toincorporate nonlinear dependencies between
the dependent and independent variableswithout usng
adistinct mathematical function. Thereare, of course, a
number of standard nonlinear techniquesbut one ad-
vantage of ANNsisthat theform of thenon-linear rela-
tionship does not need to be specified in advance. A
disadvantage of theANN approachisthat it isdifficult,
perhapsimpossible, to extract therelationship created
inthemodding*1. AnANN isformed from artificia
neuron arranged in layers, linked with coefficients (or
wel ghts), which makesthe neurd structure. Neurd net-
worksdo not need explicit formulation of the math-
ematica or physical relationshipsof thehandled prob-
lem, which givesANNs an advantage over traditional
fitting methodsfor somechemica applications.
Inthisarticle, we used alarge number of sulfona-
mide CAIX inhibitorsto establish QSAR mode swith
thepredictiveability for theactivity CAIX inhibitors.

MATERIALSAND METHODS

Data set

Structures of all compounds were drawn in
HyperChem (HypercubeInc.) software. Geometrical
optimization wasthen performmed using the semi-em-
pirica method of AustinModd 1 (AM1)1%8. Constitu-
tional descriptorsand topological indiceswerecalcu-
lated utilizing Dragon software created by the Milano
QSAR and Chemometrics Research Group
(www.disat.unimib.it/chnv). Inaddition, Dragon ca cu-
latesalarge number of descriptorsfrom theoptimized
threedimensona structuresof themolecules. Thetotd
644 descriptors extracted from compounds that were
too many to befitted in our models. Sowehadto re-
ducethe number of descriptorsthrough an objective
feature sel ection which was performed inthree steps.
First, descriptorsthat had the same valuefor at least
80% of compoundswithin the dataset were removed.
Next step, descriptorswith correl ation coefficient less
than 0.3 with the dependent variablelog (ki) werere-
moved from thedatabase. Finally, sincehighly corre-
lated descriptorsprovideapproximatdy identica infor-
mation, performingapair wise correlation andif their
correl ation coefficient exceeded 0.80, one of two de-
scriptors was randomly removed. After these three
steps, the number of descriptorswasreduced to 45.
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Althoughinmany compounds, thesulfonamidescore
(Figurel) hasundergone small structural changes, itis
conserved in some others. The structures of al com-
pounds are shown in Figure 2. Also the experimental
index of log (ki) wasreported for every compound asa
measureof inhibition. Thegreater isthisva ue, thewesker
istheinhibitionactivity of thecompound. Inother words,
model s could categorizethe compoundsinto activeand
medium and wesk classes. For thispurpose, compounds
werelabeled asactivefor rangelog (ki) between 1.4-15
and medium log (ki) 16-70 and weak log (ki) 72-500.
According to thisclassification, 43 compounds were
activeand medium and 46 wereweak. Thelist of the
chemicd nameandvaduedf tharrinhibitiveabilityindecadic
logarithm of KI (innM) of 132 sulfonamide compounds-
that were used for model development-takenfromthe
literaturé®® aregivenin TABLE 1.

A set of 22 compoundswererandomly removed
fromthe dataset to beused asthe prediction set (PSET).
Theremaining 110 compoundswere used asthetrain-
ing set (TSET). Thejackknifetest, a'so called leave-
one-out cross-vaidation (LOOCV), was applied to
train andtesting thelinear discriminated and other mod-
elsonthedatabase. Through thejackknife procedure,
one case (herecalled testing case) isleft out fromthe
database and the training procedureisdone using the
remaining cases, then thetesting caseisexamined by
the obtained model. Thisprocedureisrepeated until all
casesaretested. Asmany smulations asthe number of
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samples are made in each database and all casesare
used in boththetraining and testing processes. In order
toimprovetheresultsof themodel and alsoto achieve
asingleequation, average coefficients of parameters
were cal cul ated and used to form anew equation. Af-
ter testing with both jackknife equationsand thesingle
equation, acut-off valuewastaken to recode the ob-
tained val uesinto two possi bl e states of the dependent
varigble.

Software

A Pentium 1V persona computer (CPU at 2.4 GHz)
with windows X P operating system was used. Geom-
etry optimization was performed by Hyperchem (ver-
son 7.0 Hypercube, Inc.) a theAustinmode 1 (AM1).
Dragon softwarewas used for cal culation of constitu-
tional, topol ogical, geometrica, and functiona group
descriptors. SPSS Software (SPSSInc., Version 18)
wasused for thesmple MLR analysis. ANN was per-
formedintheMATLAB environment.

Themost significant parameterswerethen selected

SO,NHy

Figure 1. benzenesulfonamides

TABLE 1: Biological dataOUT valuesand real activity classof compoundsand the prediction of themodel.

o Predicted Predicted
Compound 1C50(nm)? real:lzcstslbwty gg; \{Zlnl:j&; activity f:)lgs-l‘; \2/2:]%&; activity
classland3 class2and3
10 10.30 1.00 1.16 1
11 4,50 1.00 5.44 1
1laa 6.70 1.00 474 1
11bb 5.60 1.00 7.29 1
llcc 4.80 1.00 5.84 1
11dd 6.70 1.00 4.43 1
11r 3.00 1.00 7.79 1
12 6.30 1.00 7.83 1
12aa 5.40 1.00 5.57 1
12bb 4.80 1.00 7.89 1
12cc 5.00 1.00 6.65 1
12dd 6.40 1.00 5.36 1
12ee 5.00 1.00 7.48 1
12ff 5.20 1.00 6.61 1
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o Predicted Predicted
Compound 1C50(nm)? reaICIaacStslbwty gg; \{:JnL(I%S activity ag; ;:lnlfjeg activity
classland3 class2and3
12gg 4.60 1.00 11.95 1
13 4.40 1.00 6.26 1
13aa 6.10 1.00 6.85 1
14 8.00 1.00 -0.01 0
19 2.80 1.00 1.16 1
la 6.40 1.00 271 1
1b 6.00 1.00 244 1
1c 4.90 1.00 2.39 1
1d 6.60 1.00 2.69 1
le 5.40 1.00 6.38 1
1f 3.50 1.00 4.63 1
11s 12.00 1.00 4.2 1
2 1.40 1.00 -3.03 0
21 3.70 1.00 1.16 1
22 5.20 1.00 1.16 1
23 14.10 1.00 1.16 1
2a 6.10 1.00 1.68 1
2b 5.90 1.00 1.42 1
2d 6.40 1.00 1.68 1
2s 14.00 1.00 -0.38 0
4 9.70 1.00 1.16 1
6 10.30 1.00 1.16 1
8 4.00 1.00 1.16 1
8a 14.00 1.00 -0.37 0
8d 6.00 1.00 -0.31 0
8e 8.00 1.00 -4.34 0
8q 8.00 1.00 -0.27 0
9 9.20 1.00 1.16 1
pentaf~1 15.00 1.00 -1.21 0
13j 52.00 2.00 16 .00
11k 37.00 2.00 -1.13 .00
11n 26.00 2.00 44 .00
11p 21.00 2.00 1.19 1.00
11q 18.00 2.00 1.19 1.00
11y 24.00 2.00 -1.44 .00
12y 39.00 2.00 -3.49 .00
15y 38.00 2.00 1.02 1.00
16y 34.00 2.00 .82 1.00
17y 20.00 2.00 -4.36 .00
18y 31.00 2.00 1.80 1.00
19y 24.00 2.00 2.75 1.00
Im 40.00 2.00 1.19 1.00
ly 33.00 2.00 -7.51 .00

20y 16.00 2.00 -2.95 .00
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Compound 1C50(nm)? rea]CIZ(;tsleIty gg; X:Inlfje:,f P;ce:ﬁ L?Ef/d ag; Z:lnlfje; P;c?t(? l/ﬁsd
classland3 class2and3

24 27.90 2.00 -1.86 .00
25 35.20 2.00 -2.45 .00
25y 22.00 2.00 -3.88 .00
26 47.50 2.00 -1.42 .00
26y 26.00 2.00 -4.82 .00
2e 57.00 2.00 1.39 1.00
2f 63.00 2.00 .76 1.00
3 18.40 2.00 -4.84 .00
6b 48.00 2.00 -4.25 .00
6c 43.00 2.00 -5.67 .00
6y 33.00 2.00 -3.88 .00
7 18.10 2.00 -4.84 .00
7a 38.00 2.00 1.87 1.00
7b 42.00 2.00 1.47 1.00
7c 54.00 2.00 43 .00
7d 26.00 2.00 1.89 1.00
Te 29.00 2.00 40 .00
7h 64.00 2.00 -1.73 .00
7q 35.00 2.00 181 1.00
8b 31.00 2.00 1.92 1.00
8c 49.00 2.00 .98 1.00
8h 37.00 2.00 -.85 .00
8i 70.00 2.00 -1.58 .00
bza 47.00 2.00 .30 .00
dcp 50.00 2.00 -1.52 .00
ind 24.00 2.00 -.67 .00
sulthi~1 43.00 2.00 -2.04 .00
10y 285.00 3.00 -255.00 .00 -255.00 .00
1la 135.00 3.00 21 .00 21 .00
11b 112.00 3.00 -85.00 .00 -85.00 .00
1lic 106.00 3.00 -80.00 .00 -80.00 .00
11d 83.00 3.00 -52.00 .00 -52.00 .00
1lle 139.00 3.00 -96.00 .00 -96.00 .00
11f 79.00 3.00 -39.00 .00 -39.00 .00
11g 136.00 3.00 -101.00 .00 -101.00 .00
11h 73.00 3.00 -48.00 .00 -48.00 .00
11i 113.00 3.00 175 1.00 1.75 .00
24y 121.00 3.00 -88.00 .00 -88.00 .00
2y 238.00 3.00 -197.00 .00 -197.00 .00
3s 146.00 3.00 -117.00 .00 -117.00 .00
3y 294.00 3.00 -247.00 .00 -247.00 .00
dy 305.00 3.00 -276.00 .00 -276.00 .00
5y 103.00 3.00 -74.00 .00 -74.00 .00
6a 165.00 3.00 -141.00 .00 -141.00 .00

6d 178.00 3.00 -146.00 .00 -146.00 .00
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L Predicted Predicted
Compound 1C50(nm)? realdaafst;bw ty 32; \{:Llfje; activity al;; Z:Lléje; activity
classland3 class2and3
6e 160.00 3.00 -132.00 .00 -132.00 .00
6f 280.00 3.00 -249.00 .00 -249.00 .00
69 450.00 3.00 -311.00 .00 -311.00 .00
6h 500.00 3.00 -341.00 .00 -341.00 .00
6i 500.00 3.00 -372.00 .00 -372.00 .00
6 500.00 3.00 -366.00 .00 -366.00 .00
6k 500.00 3.00 -375.00 .00 -375.00 .00
6m 72.00 3.00 -42.00 .00 -42.00 .00
f 230.00 3.00 -187.00 .00 -187.00 .00
79 100.00 3.00 -70.00 .00 -70.00 .00
7i 79.00 3.00 -41.00 .00 -41.00 .00
7 85.00 3.00 -48.00 .00 -48.00 .00
7K 80.00 3.00 -46.00 .00 -46.00 .00
m 135.00 3.00 -97.00 .00 -97.00 .00
m 500.00 3.00 -390.00 .00 -390.00 .00
70 120.00 3.00 -89.00 .00 -89.00 .00
7p 106.00 3.00 -86.00 .00 -86.00 .00
Ty 245.00 3.00 -208.00 .00 -208.00 .00
8f 205.00 3.00 -175.00 .00 -175.00 .00
89 89.00 3.00 -57.00 .00 -57.00 .00
8j 84.00 3.00 -55.00 .00 -55.00 .00
8k 78.00 3.00 -45.00 .00 -45.00 .00
8m 120.00 3.00 -95.00 .00 -95.00 .00
8n 500.00 3.00 -380.00 .00 -380.00 .00
80 95.00 3.00 -66.00 .00 -66.00 .00
8p 81.00 3.00 -43.00 .00 -43.00 .00
8y 264.00 3.00 -225.00 .00 -225.00 .00
9y 269.00 3.00 -214.00 .00 -214.00 .00

aC50 is an experimental index reported in nanomolars (nM), represent the inhibition activity of the molecule toward carbonic

anhydrase.

®Compounds were regarded active (coded as 1) for |C50<15 and medium (coded as 2) for 1C50<70 and weak (coded as 3) for

I C50<500.

using multinomid logisticregresson modd. Theratio-
nal underlying thisstudy wasto use MLR to build the
most effective set of parameterswhich then werefed
into awel I-established neural network. MLR andysis
of molecular descriptors was carried out using the
stepwise strategy in SPSS.

Modd development and evaluation

Inthefirst stage, MLR servesasanon-linear model
on thedataset to select significant parametersthrough
the ‘Self-consstency Test’. Thistestisan examination
for the self-consistency of aprediction method. Then
theANNSs, which act non-linearly inthelast tage, were

fed by theoutputsof MLR to predict theactivity CAIX
inhibitors. Thelog (ki) of the compoundswas used as
thedependent variableinmodel development. Alsothe
independent variablesin each mode weresd ected some
quantitativedescriptors. Inneura network based QSAR
modd s, weperformed aleave 10 out procedure (cross-
validation) to avoid any possiblebiasin selecting test-
ingsetindividuas. Thedtructuresof dl neurd networks
were optimized for minimum root mean square error
(RM SE) asaperformance benchmark.

Multinomial logisticregression model
Theused multinomid logistic regressonmodel isa
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generdization of thelogigticregressonmodd. Itiscom-
monly used for datain which the dependent variableis
polytomous, and independent variables are numerical
or categorica predictors. Asthebinary dependent vari-
able can always be interpreted as the occurrence or
non-occurrenceof characteristic, thelogisticregression
model isan expression of theform

log(Pr /1 — Pr) = fio + Z Bixi, (1)
i=1

where 3, isthe intercept and the ,’s denote the un-
known logistic regression coefficientsof x. parameters;
also Pr denotesthe probability that characteristic will
occur. The quantity ontheleft sideof Equation (1) is
cdledalogit. Themodd canbegenerdizedinthecase
wherethe dependent variablesunlikeabinary logistic
regression model, have morethan two categories. For
suchasimplemodd, amultinomial logisticregresson
mode withlogit link can berepresented as

]“g(in]-:i{l_) Ao+ D Bl ¢ @

Inthismode, the sameindependent variable appears
in each of the ¢ categories, and the separateintercept,
B,(c), and slopes (or logit coefficients), B, (C), are usu-
ally estimated for selected parametersin each contrast.
A way to interpret the effect of independent variables,
X,, onthe probability of beingin category c, isto use
predicted probabilities, Pr (), for different valuesof x :

1-4

t'KE"( Bole) + Z Bilc)x; )
Pr(c) : =i /

4 n
1+ 3 exp(;&()(k) +¥ p‘,cki,w) (3)
k=1

Then, theprobability of beinginthereferencecategory;,
‘0’ (TypelV), can be ca culated by subtraction:

Pr(0) = 1 — i Pr(k) 4
Thedasswiththehi ghest probability isthefina
prediction?d,

Artificial neural networ k modd

Artificial neural networks (ANNSs) are powerful
non-algorithmic model sused vastly for classifying dif-
ferent types of data. Being trained from anumber of
sampl es, aneural network will be capable of drawing
non-linear boundaries to put the new unobserved
samplesinto relevant classes. In thisway, the selected
variablesfrom multinomial logistic regression model
were used as input nodes for the ANN. thisis sup-
posed to reduce the number of input nodes, simplify
the network structure and shorten the mode! building

—=> Regulor Paper
time

We used feed-forward with backpropagation al -
gorithmtotrain our networks. Usingthisagorithm, de-
scriptorsof training casesarefed into the network. The
final outputs (Ojk) estimated by the network are com-
pared with thereal classof the cases (Tjk), producing a
sum square error:

SSEzKZ; ;(Tjk—Ojk)z (5)
WhereM isthe number of training casesand N isthe
number of output neurons. SSE is propagated back
into the network to adjust theweights. thetraining cases
aretested with new weightsand the processisrepested.
Through such process, the SSE isminimized®”. Weused
the SSE asanindex of network efficiency inoptimizing
thenumber of hidden neuronsin networks. To do so,
the number of hidden neuronswas changed in every
network in order to devel op networks generating the
minimal SSE. Findly, after such optimizing procedure,
thenumber of hidden layer unitsreached®,

We used threelayer networks. Each unitinthein-
put layer wasfed by oneindependent variablewhich
has been sel ected by multinomial logistic regression
model. Thefina neural network architecturewascon-
sisted of 22 unitsininput layer, 15 unitsin hidden layer
and 3 unitsin output layer. Theactivation function of
hidden layer unitswaslogsig. Training has been per-
formed for 15000 epochs. The value of thelearning
rate parameter has been set to 08. The software used
to build the neurd networkswasin-housewritteninthe
MATLAB programming language.

Artificia neurd networksare powerful non-linear
modelsused vadtly for classfying different typesof data
A neural network iscomposed of few layers of neu-
rons. Neuronsin adjusting layers are connected with
relaivequantitativeweights. Theseweightsarerandomly
chosen, and then are changed through thetraining pro-
cedure, so that the sum-square error (SSE) is mini-
mized. We used three layer networks. Each neuronin
theinput layer wasfed by oneindependent variable. A
bias neuron was added to theinput aswell ashidden
layersto avoid network collapse.

We used networkswith a5-x-3 structure. To ob-
tainthe best classification results, the number of neu-
ronsin the hidden layer and other parameters of the
ANN structure, including learning rates, training func-
tion and training epochswere optimized through atrid-
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and-error procedure. Each neuronin the network was
connectedtod| neuronsin neighboringlayer (S) through
adjustableweights. Network trainingisthe process of
adjusting such weights somehow that theerror ismini-
mized. The number of input layer neuronsisequal to
the number of descriptors. We had three output layer
neuron, whilethe number of hidden layer neuronswas
amatter of optimization. Itisgeneraly said that thera
tio of training pairsto thewholenetwork weightsshould
be between 1 and 3%, Sincethe numbersof input and
output neurons are constant, the approximate number
of hidden neuronscan becdculated usingthisrule. Itis
said that if theratio islessthan 1, then the network
simply memorizesthetrain set or in other words, gets
over-trained; whileif it exceeds 3, then the network
falstofind ard ationship between dependent and inde-
pendent variables. The descriptor values were first
ranged between zero and onein order to ensure that
some descriptorsare not weighted more heavily than
othersduetotheir nature. Thefirst layer only fed net-
work with the descriptors, whilein hidden and output
layers, asigmoid function acted on summation of in-
comingweghts.

Thedataset wasdivided into two subsets: training
(75%) and test sets (25%). thetest set isused to test
thetrend of the prediction accuracy of themode trained
at somepoint of thetrai ning process. then, thetraining
set was used to optimi zethe network performance. the
training function ‘trainscg’in MATLAB wasused to
train thenetwork. therationa efor just using these de-
scriptorsistheir smal number, which providesuswith
thebest classifier. model sthrough avoiding varigblere-
dundancy and overfitting problem of the network.
Overfitting problem or poor generali zation capability
happenswhen aneura network overlearnsduring the
training period. The optimal network wastrained and
tested using jackknife method.

Theflexibility of ANN enablesit to discover more
complex relationshipsin experimental data, whenitis
compared with thetraditional statistica model .

M odel evaluation

Mode swereevduated using somedtatistical indi-
ces. For caculatingsuchindices, N (truepositivepre-
dictions), N (truenegative predictions), N_, (false
positivepredictions), and N, (falsenegative predic-
tions) were counted. Thefirstindex iscalled fraction

correct (FC), which shows the fraction of com-
pounds correctly classfied:

FC = ((Nqy + Nyp) /N, ) 100 (6)

Falsedarm rate (FAR)™ representsthefraction of in-
active compoundsthat werewrongly classified. A high
FAR vaueincreasestherisk of detecting fakeinhibi-
torsby themodel. So thisisanimportant index to be
noted when using aninhibition prediction modd!:

FAR = (Ngp /(Npy + Nyp)) x 100 Y

Probability of detection (POD)™ isanother index rep-
resenting thefraction of active compoundsbeingtruly
classfied. A highvaueof thisindex, guaranteesnot miss-
ing any activecompound by themodd ; that is, it causes
asmany activecompounds aspossibleto beclassified
correctly intheactiveclass. POD isdefined as.

POD = (N /(Ng + Nypp)) x 100 8
Thisstudy clarified theefficiency of usngthedtatisticd
model of multinomial logistic regression asaprepro-
cessor in determining effective parameters. Moreove,
theoptimal structure of neura network can besimpli-
fied by apreprocessor inthefirst stage, thereby reduc-
ing the needed timefor neura network training proce-
dure in the second stage and the probability of over
fitting occurrence decreased and ahigh precision and
reliability obtained inthisway®!.

RESULTSAND DISCUSSION

QSARusngMLR

Descriptorsaredivided into groups such as consti-
tutional, topol ogical, geometrical . Constitutional de-
scriptorsare rel ated to the number of atomsand bonds
ineach molecule. Topological descriptorsincludeva
lence and non val ence molecular connectivity indices
cal culated from the hydrogen-suppressed formul a of
themolecul e, encoding information about thes ze, com-
position, and the degree of branching of amolecule.
Geometrica descriptorsarecd culated from 3-D aomic
coordinates of the molecule and comprise moments of
inertia, molecular volumes, molecular surfacearess, and
gravitationindices®.

In order to obtain aunified equation, weignored
the misclassified cases. Then, we used the averages of
coefficientsand constant val ues of equationssuggested
for predicting the remaining casesin jackknife proce-
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dure. Thefollowing equationswere obtai ned:

Y13 = -61+123x M SD+3.3x T12+137.5x

JGI4-20.5MATS3e ©)

Y 23=-32.5+71.6x M SD+2.1x T12+66xJGI4+3x

NDB +7.7xC028 -18x MAT 4V (10)
Sincethedescriptorswith grester coefficientsaremore
determining in regress on equations, we can conclude
that according to thisequation, the most important de-
scriptor areM SD and JGI4 and theleast determining
oneisTI2and nDB and C028. According tothisequa
tion, themost important descriptorsamongal the 2D-
autocorrel ation onesareweighted by the atomic mass,
electronegativity, and van der Waal s volumes. Topo-
logical descriptor hel psto differentiate the molecules
according mostly totheir size, degreeof branching, flex-
ibility and overall shape. MSD, Mean square distance
index (baaban) iscontributing positively totheactivity,
which suggeststhat substituentshave smaller branching
will improveinhibitory activity®*3, JGl4isbelongsto

HEY cl
" \mfﬁm/m HQ
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Galvez topological chargeindices, whichevauatethe
chargetransfer between pairs of atomsand hencethe
globa chargetransfer inthemolecule. C-028isthesec-
ond descriptor, appearinginthemoded. Itisone of the
atom -centered fragment descriptorsthat describeeach
atom by its own atom type and the bond types and
atomtypesof itsfirst neighbors. The C-028 descriptor
displaysR-CR-X. Thisatom centered fragment descrip-
tor isdefined for each ring atom that hasthree neigh-
bors. Inthiscase, R-CR-X can be defined asacentral
carbon atom (C) on an aromatic ring that has one car-
bon neighbor (R) and one heteroatom neighbor (X) on
the samearomatic ring and thethird neighbor outside
thisringisacarbon (R). The C-028 mean effect hasa
positivesign. Hence, it was concluded that by increas-
ing thenumber of heteroatom (with R-CR-X format) in
moleculestheva ue of thisdescriptor increased. TI2is
Topological Second Mohar index. The number of
double bonds (nDB) is equal to the number of non-
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Figure2: Chemical structuresof compoundsused in our dataset.
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Figure3: Plot of predicted ver susobserved | C50for class1, 3

aromatic double bonds. MATS3e describes the
autocorrelation of the atomic electronegativities by
Moran autocorrelation of lag 3 weighted by atomic
Sanderson el ectronegativities (MATS3e) and Moran
autocorrelation of lag4 weighted by vander Walsvol-
umes (MATSAV). Similarly MAST4v the path connect-
ingapair of atomshaslength 4 and involvestheatomic
van der Waa svolumesaswelghting scheme. Figure 3,
4 showstheplot of observed versus predicted Ki for
both thetraining dataand thetest set.

QSAR usingANNs

We started with a network that was supplied by
two descriptorsthat were sel ected by, multinomia lo-
gigticroutine. Thiswasa2-x-3 network (twoinput neu-
rons, X hidden and three output neuron). Then we added
other descriptorsand continued with two 3-x-3 aswell
asa4-x-3 networks. Finaly, we finished our model
building with a5-x-3 network using other two descrip-
tors(MATS3eand MATS4V) that were supposed to
belesseffective. Ascan be seenfromthisTABLE 2,
evaluating resultsof the networks showed that the net-

T T
-400.00 -300.00

500.00 om0

R? Linear = 0.963
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300.00

Predicted 1C50
(o]

200.00-{ 2

100.00
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T T T T
-200.00 -100.00 0.00 100.00

Observed IC50
Figure4: Plot of predicted ver susobserved | C50for class2, 3

T T
-400.00 -300.00

works supplied with five descriptor, relatively offered
good predictiveability except MATSAV and MATS3e
descriptors. When MATS4V and MAT S3ewereadded
totheinput layer of thisnetwork the statistical indices
were deteriorated, that supported the assumption ex-
pressing the deteriorate of MATS4V and MATS3e
descriptorsinther influence of theinhibition activity of
compound. Thelast network was constructed in order
to ensurethelogistic judgment about the descriptors.
AsaMLRandANN, thestructureand activity of com-
poundsweremost effectively related by MSD and T12
and JGl4 for classl, 3 and MSD and TI2 and JGI4
and nDB and C028 for class2, 3, respectively.

Aswasmentioned in Materialsand methods, we
totaly invented 15 networks. Thenumber of neuronsin
hidden layer was optimized in each network regarding
the least SSE rate. The indices FC, FAR, and POD
resulted by networksareseparatdy illustratedin TABLE
3.

Theoptimd cutoff for the OUT va ueswasfoundto
beOfor class1, 3and-.11 for class 2, 3. So, the com-
poundswith predicted OUT < O wereregarded aswesk
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TABLE 2: Evaluatingtheresultsobtained by several neural networks

Networ ks with different inputs® FC (%) FAR (%) POD (%)

MSD-TI2-JGI4-nDB- C028-MATSAV-MATS3e g:g%gz% g:ggzg g:gézgi
MSD-TI2-JGI4-nDB-MATS4V-MATS3e g:ggz% g:ggzg g:ggzg
MSD-TI2-JGI4- C028-MATSAV-MATS3e g:g:gﬁg C(':fas;zl’?;fj Cc'fasssslz’%:f;
MSD-JGI4-nDB- C028-MATSAV-MATS3e g:gg:gﬁ g:gzlgzg g:gg:gg
- Gmcw  gmek  omew
MSD-TI2-JGI4-MATSAV-MATS3e o o) P
T12-JG14-nDB- CO28-MATSAV-MATS3e g:ggzgé C(':fas;zl’?;f;' g:ggzgg
MSD-TI2-nDB- CO28-MATSAV-MATS3e g:ggz% g:gzlgzg 8:@132232
RS — Gmi  gmii  omce
MSD-TI2-JGI4-nDB- C028-MATS4V g:g:g;gg g:g:g;i g:gé;gg
PR —— Gmse  gmil S
S Gmfw  omz  Cmice
oz Gmiw  gmii  omcw
Gl Getsl  Smaer
- oo Cmizs  omis

aThe networks differ in input neurons. Regarding the obtained results, we could conclude that M AT S4V, MAT S3e do not seem
to good effects on the network decision. So these two descriptors were found to be the less reliable ones in predicting the

inhibition activity of compounds.

TABLE 3: Prediction resultsobtained of two models.

TABLE 4: Definition of thefinally selected set of descriptors

Test Performance classl3 clas2.3 Name Type Description Refrence
: : _ measures logical mean square
Multinomial logistic MSD Topologic distance index [33,37]
regression indices (Balaban)
FC (%) 86 65 TI2 2D matrix-based second M ohar [33,:37]
descriptors index ’
FAR (%) 1 11 2D mean topological
POD (%) 100 87 JG14 autocorrelations charg:adler;djx of [33,37]
Neural networks nDB Constitutional Number of double [33,37]
FC (%) 79 62 indices bonds '
FAR (%) 17 21 coz8 R--CR--X Atom-ceniied - (3337)
ragments
POD (%) 78 74 Moran
- - 2D autocorrelation of
and with OUT >0 asactiveand OUT >-.11asme-  MATS3e altocorrelations 120 3weighted by [33,37]
dium. The model with FC=86% FAR = 1%, POD = cleotoneeaivity
100% for classl, 3 and FC=65% FAR = 11%, POD = Moran
0, i ~Fi autocorrelation of
87%for class2, 3_were§1ve_ry good predl_ ctivetool. AT 2D|at_ lag 4 weighted by [33.37]
Thesulfonamidederivativesusedinthisstudy belong autocorretalions ——yan der Waals
volume

toawidevariety of molecular family containing smilar

number of sulfonamidegroups, smilar number of aro-
matic rings, and similar number of heterocyclicrings.
Names, typesand definition of thedescriptorssuggested

and usadinthefind modd areshownin TABLE 4. Syn-
thesisandinhibition assay of alarger number of inhibi-
tors, under the sameexperimentd conditionsasthestud-
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ied compounds, will alsobehepful inthiscontext.

QSAR studies provide deeper insight into the
mechanism of action of compoundsthat ultimately be-
comesof great importancein modification of thestruc-
ture of compounds. In addition, QSAR studies also
provide quantitative models, which permit prediction
of activity of compoundsprior to the synthesi§*1. Al-
though the resulted model swere not capabl e to esti-
matethe exact valueof ki for compounds, they had the
ability to classify the compoundsinto three activeand
medium and wesk classesefficiently. Thestudy proved
the capability of MLR and neura network to deal with
thisproblem. Thefirst method waseasy andfast, andit
correctly selected more efficient descriptors. Onthe
other hand, theartificial neura network outperformed
theMultinomid Logistic Regress on method through es-
tablishing the non-linear associ ation between eval uated
descriptorsand 1 C50.

In order to be comparablewith results of similar
QSAR attempts, we reported RM SE valuesin normal
rangeof log (ki) aswell. From an experimenta point of
view, CA isacomplicated enzymeand isnot so easy to
assay. It hasmorethan oneisozyme. Inthisway, pos-
sibleerrorsinreporting theki values, dueto assay dif-
ficulties, could adversdly affect our QSAR results. In
spite of thesefacts, the RM SE valuesresulted by our
mode saredtill good enoughto makethesemodd strust-
ableinfuturepredictions. Thismode hasgood statisti-
cal characteristicsasevident fromitsR2=0.973 and
R2=0.963 values.

Equations 4 and 5 reveal that a higher value of
Balaban mean square distanceindex (M SD) and 4nd
order mean topological chargeindex (JGI4) are ad-
vantageousto enhancethe activity. Onthe other hand,
ahigher value number of doublebonds (nDB), second
Mohar index (T12) and Countsfor certain structural
fragment, R-CH-X (descriptor C-028) aredetrimental
to theactivity. Thusthedescriptorsidentified for ratio-
nalizingtheactivity give pathsto modul atethestructure
to adesirable biological end point. The topological
(TOPO) class descriptorsare based on agraph repre-
sentation of themoleculeand arenumerical quantifiers
of molecular topology obtained by the application of
algebraic operatorsto matricesrepresenting molecular
graphs and whose values are independent of vertex
numbering or labeling. They can be senditiveto oneor
more structural features of themolecule such assize,

—=> RegUlOr Peper

shape, symmetry, branching and cyclicity and canaso
encode chemica information concerning atomtypeand
bond multiplicity. The 2D autocorre ationsare molecu-
lar descriptorswhich describe how aconsidered prop-
erty isdistributed a ong atopol ogical molecular struc-
ture. The2D-AUTO descriptors havetheir originin
autocorrelation of topologicd structureof Broto-Moreau
(ATS), of Moran (MATS) and of Geary (GATS). The
computation of thesedescriptorsinvolvethe summa
tionsof different autocorrelation functions correspond-
ingtothedifferent fragment lengthsand lead to differ-
ent autocorrel ation vectorscorresponding to thelengths
of the structural fragments. Also aweighting compo-
nent in terms of aphysicochemical property hasbeen
embedded in thisdescriptor. Atom centered fragments
(ACF descriptors) are simple mol ecular descriptors
defined asthe number of specific atom typesinamol-
eculeandtheir calculationisbased on the knowledge
of themolecular composition and atom connectivity.
Even descriptorsthat at thefirst look seem not to be
related to the 3D molecul ar structure, likethe number
of double bonds or the number of CHR3 groups, in
fact, doidentify molecular sub-fragmentsthat can be
consider as ‘structure making’ factors. For example,
the number of doubl e bonds between two carbon at-
omsisreated with thecis-transisomerism or may show
theexistence of anaromatic ring. Thenumber of double
bonds may a so berelated with the hydrophobicity and
reactivity of the considered compounds. Another sig-
nificant structura €ement, which containsadoublebond,
isthe carbonyl C=0 group®*®. The structure-activity
correl ations obtai ned with the descriptors suggest that
lessbranched and saturated structural templateswould
bebetter for theactivity.

Thestructural insights obtained from the present
study are expected to be useful in thefuture design of
new compoundswith potentidly higher inhibition activ-
ity against carbonic anhydrase CAIX.

CONCLUSIONS

To achieveasignificant correlation, itisessential
that proper descriptorsare used. A widevariety of mo-
lecular descriptorsareused in QSAR model §*71. How-
ever, asthe number of descriptorsincreases, themodel
becomes complicated, anditsinterpretationisdifficult
when many variablesare used. Thus, theapplication of
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suchtechniquesgenerdly involvesvariablesdectionfor
buildingwell-fitted modd s M any different methodshave
been used to sel ect the significant descriptorsfor cali-
bration purposes. On the other hand, artificia neural
networks (ANNS) are popular in QSAR modelsasa
result of their successwhere complex nonlinear rela
tionshipsexist anong data*®*%. TheANN mode was
primarily developed for predictive ability and classifi-
cation. ThedescriptorsidentifiedinMLR andysishave
highlighted the role of mean square distance index
(MSD), topologica charges(JGI4), certain structural
fragments (C-028), the second Mohar index (T12) have
positiveinfluenceontheinhibitory effect. Based onthe
MLR equation, which indicates the dependence and
the extent of influence of the descriptorsto theinhibi-
tory activity, various structura modificationscanbepro-
posed for designing of novel structureswith desired
characterigtics.

Theresultsof two QSAR modd std| usthat nonlin-
ear selection methodsand activity predictionmodelsdo
better thantheir linear counterparts. Thisfact—thatis
also confirmed by other QSAR attempts?:349 -jsdue
to complicated rel ations between structure and activity
of compounds. From the above discussion, it can be
seen that both approachesare statistical ly meaningful.
Theresultsobtained show that nonlinear regresson ana-
lyzeisuseful tool sto distinguish between theinhibitory
activitiesof sulfonamidestoward CAIX isozyme.
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