
Quantitative structure - Activity relationships study of carbonic
anhydrase inhibitors using multinomial logistic regression model and

artificial neural networks

Hassan Sahebjamee*1, Parviz Abdolmaleki2, Alireza Foroumadi3, Parichehre Yaghmaei1

1Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, (IRAN)
2Department of Biophysics, Faculty of Science, Tarbiat Modares University, P.O. Box: 14115/175, Tehran, (IRAN)

3Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, (IRAN)
E-mail: sahebjamei.hassan386@gmail.com

Regular Paper

ABSTRACT

Multinomial logistic regression (MLR) and artificial neural networks (ANNs) were employed to seek the quantitative
structure � activity relationships (QSARs) that correlate structural descriptors and inhibition activity of carbonic
anhydrase IX inhibitors. Many quantitative descriptors (n=644) were generated to express the physicochemical
properties of 132 compounds with optimized structures with known ki values. MLR were used to nonlinearly select
different subsets of descriptors and develop nonlinear models for prediction of log (ki). The most significant
parameters were then selected. A neural network model was then constructed and fed by the parameters selected
by MLR. The networks have been trained and tested using the best subset selected by MLR. The best prediction
model was found to be a 5-3-3 artificial neural network which was fed by the most frequently selected descriptors
among these subsets. Cross-validation and a separate prediction set were used to evaluate the stability and
prediction ability of the established models. Our results demonstrated that descriptors correlated to autocorrelations,
topological properties were major determinants of inhibition activity of these compounds. Both methods were able
to significantly describe and predict the CAIX inhibitory activity.  2013 Trade Science Inc. - INDIA

INTRODUCTION

Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze
the interconversion between carbon dioxide and the bi-
carbonate ion, and are thus involved in vital physiologi-
cal processes[1]. At least four CA isozymes (CA IV,
CA IX, CA XII, and CA XIV) are associated to cell
membranes, with the enzyme active site generally ori-
ented extracellularly. Some of these isozymes were
shown to play crucial physiological roles such as CA
IX may serve as markers for tumors and hypoxia[2-4].
The carbonic anhydrase inhibitors are widely studied in
the last decade, due to their potential functions for the
avoidance and treatment of a large number of diseases[5-

7]. Supuran and his group have presented a great amount
of work in this field[8,9]. So far, two main classes of CA
inhibitors are recognized as the metal complexing an-
ions and the unsubstituted sulfonamides. They bind to
the Zn (II) ion of the enzyme by substituting the non-
protein zinc ligand or by adding to the metal coordina-
tion sphere to generate trigonal-bipyramidal species1.
ulfonamides, as the most important CA inhibitors, bind
in the tetrahedral geometry of Zn (II) ion in deprotonated
state; whereas metal-complexing anions are weak CAIs,
with affinities generally in the millimolar range. The aro-
matic side chains of sulfonamide inhibitors interact with
the hydrophobic amino acid residues in the binding site
e.g. Phe131, Leu141, Val143, and Ala45 and stabilize
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the interaction[10].
The application of computational methods for de-

signing biologically active compounds has recently in-
troduced a new approach to modern drug discovery
research. Computational methods can move forward
the procedure of discovering new drugs by designing
new compounds and predict their potency or activity.
Different kinds of statistical models such as regression
analyses and artificial intelligence based models such as
neural networks can be used as techniques for feature
selection to develop QSAR models. Indeed predictive
ability of such models can be applied to estimate activ-
ity of the designed molecules before their synthesis and
assay in laboratory. In this way, the research cost can
be minimized. QSAR models are mathematical equa-
tions that provide comprehensive knowledge on the
mechanism of biological activity of compounds by es-
tablishing a relationship between chemical structures and
their biological activities. Molecular descriptors play an
important role in developing QSAR models and finding
a set of molecular features affect the biological activity
of interest is the essential part of modeling procedure in
QSAR analyses[11]. Molecular descriptors are deter-
mined through the production of the features which are
numerical values corresponding to topological, geomet-
ric, constitutional or and quantum chemical features[10].
The derived relationships between molecular descrip-
tors and activity are used to estimate the property of
other molecules and/or finding the parameters affecting
the biological activity.

Carbonic anhydrase inhibitors were studied by many
authors through quantitative structure-activity relation-
ships[12-16]. In this study, we used Multinomial Logistic
Regression (MLR) and artificial neural networks
(ANNs) as nonlinear models to search the QSAR
benzenesulfonamides derivatives as inhibitors CAIX.
Initially, we used MLR for selecting more effective de-
scriptors and to obtain an equation for prediction of
inhibition activity. Then, according to these results, we
developed neural networks with different input patterns.
MLR compares multiple groups through a combination
of binary logistic regressions. The group comparisons
are equivalent to the comparisons for a dummy-coded
dependent variable, with the group with the highest nu-
meric score used as the reference group. The math-
ematical adaptability of ANNs acclaims them as a pow-
erful tool for pattern classification and building predic-

tive models. A particular preference of ANNs is their
ability to incorporate nonlinear dependencies between
the dependent and independent variables without using
a distinct mathematical function. There are, of course, a
number of standard nonlinear techniques but one ad-
vantage of ANNs is that the form of the non-linear rela-
tionship does not need to be specified in advance. A
disadvantage of the ANN approach is that it is difficult,
perhaps impossible, to extract the relationship created
in the modeling[17]. An ANN is formed from artificial
neuron arranged in layers, linked with coefficients (or
weights), which makes the neural structure. Neural net-
works do not need explicit formulation of the math-
ematical or physical relationships of the handled prob-
lem, which gives ANNs an advantage over traditional
fitting methods for some chemical applications.

In this article, we used a large number of sulfona-
mide CAIX inhibitors to establish QSAR models with
the predictive ability for the activity CAIX inhibitors.

MATERIALS AND METHODS

Data set

Structures of all compounds were drawn in
HyperChem (Hypercube Inc.) software. Geometrical
optimization was then performmed using the semi-em-
pirical method of Austin Model 1 (AM1)[18]. Constitu-
tional descriptors and topological indices were calcu-
lated utilizing Dragon software created by the Milano
QSAR and Chemometrics Research Group
(www.disat.unimib.it/chm/). In addition, Dragon calcu-
lates a large number of descriptors from the optimized
three dimensional structures of the molecules. The total
644 descriptors extracted from compounds that were
too many to be fitted in our models. So we had to re-
duce the number of descriptors through an objective
feature selection which was performed in three steps.
First, descriptors that had the same value for at least
80% of compounds within the dataset were removed.
Next step, descriptors with correlation coefficient less
than 0.3 with the dependent variable log (ki) were re-
moved from the database. Finally, since highly corre-
lated descriptors provide approximately identical infor-
mation, performing a pair wise correlation and if their
correlation coefficient exceeded 0.80, one of two de-
scriptors was randomly removed. After these three
steps, the number of descriptors was reduced to 45.
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Although in many compounds, the sulfonamides core
(Figure1) has undergone small structural changes, it is
conserved in some others. The structures of all com-
pounds are shown in Figure 2. Also the experimental
index of log (ki) was reported for every compound as a
measure of inhibition. The greater is this value, the weaker
is the inhibition activity of the compound. In other words,
models could categorize the compounds into active and
medium and weak classes. For this purpose, compounds
were labeled as active for range log (ki) between 1.4-15
and medium log (ki) 16-70 and weak log (ki) 72-500.
According to this classification, 43 compounds were
active and medium and 46 were weak. The list of the
chemical name and value of their inhibitive ability in decadic
logarithm of KI (in nM) of 132 sulfonamide compounds-
that were used for model development-taken from the
literature[19-25] are given in TABLE 1.

A set of 22 compounds were randomly removed
from the dataset to be used as the prediction set (PSET).
The remaining 110 compounds were used as the train-
ing set (TSET). The jackknife test, also called leave-
one-out cross-validation (LOOCV), was applied to
train and testing the linear discriminated and other mod-
els on the database. Through the jackknife procedure,
one case (here called testing case) is left out from the
database and the training procedure is done using the
remaining cases; then the testing case is examined by
the obtained model. This procedure is repeated until all
cases are tested. As many simulations as the number of

samples are made in each database and all cases are
used in both the training and testing processes. In order
to improve the results of the model and also to achieve
a single equation, average coefficients of parameters
were calculated and used to form a new equation. Af-
ter testing with both jackknife equations and the single
equation, a cut-off value was taken to recode the ob-
tained values into two possible states of the dependent
variable.

Software

A Pentium IV personal computer (CPU at 2.4 GHz)
with windows XP operating system was used. Geom-
etry optimization was performed by Hyperchem (ver-
sion 7.0 Hypercube, Inc.) at the Austin model 1 (AM1).
Dragon software was used for calculation of constitu-
tional, topological, geometrical, and functional group
descriptors. SPSS Software (SPSS Inc., Version 18)
was used for the simple MLR analysis. ANN was per-
formed in the MATLAB environment.

The most significant parameters were then selected

Compound IC50(nm)a real activity 
classb 

OUT values 
class 1and3 

Predicted 
activity 

class1and3 

OUT values 
class 2and3 

Predicted 
activity 

class2and3 
10 10.30 1.00 1.16 1   

11 4.50 1.00 5.44 1   

11aa 6.70 1.00 4.74 1   

11bb 5.60 1.00 7.29 1   

11cc 4.80 1.00 5.84 1   

11dd 6.70 1.00 4.43 1   

11r 3.00 1.00 7.79 1   

12 6.30 1.00 7.83 1   

12aa 5.40 1.00 5.57 1   

12bb 4.80 1.00 7.89 1   

12cc 5.00 1.00 6.65 1   

12dd 6.40 1.00 5.36 1   

12ee 5.00 1.00 7.48 1   

12ff 5.20 1.00 6.61 1   

TABLE 1: Biological data OUT values and real activity class of compounds and the prediction of the model.
Figure 1: benzenesulfonamides
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Compound IC50(nm)a real activity 
classb 

OUT values 
class 1and3 

Predicted 
activity 

class1and3 

OUT values 
class 2and3 

Predicted 
activity 

class2and3 
12gg 4.60 1.00 11.95 1   

13 4.40 1.00 6.26 1   

13aa 6.10 1.00 6.85 1   

14 8.00 1.00 -0.01 0   

19 2.80 1.00 1.16 1   

1a 6.40 1.00 2.71 1   

1b 6.00 1.00 2.44 1   

1c 4.90 1.00 2.39 1   

1d 6.60 1.00 2.69 1   

1e 5.40 1.00 6.38 1   

1f 3.50 1.00 4.63 1   

11s 12.00 1.00 4.2 1   

2 1.40 1.00 -3.03 0   

21 3.70 1.00 1.16 1   

22 5.20 1.00 1.16 1   

23 14.10 1.00 1.16 1   

2a 6.10 1.00 1.68 1   

2b 5.90 1.00 1.42 1   

2d 6.40 1.00 1.68 1   

2s 14.00 1.00 -0.38 0   

4 9.70 1.00 1.16 1   

6 10.30 1.00 1.16 1   

8 4.00 1.00 1.16 1   

8a 14.00 1.00 -0.37 0   

8d 6.00 1.00 -0.31 0   

8e 8.00 1.00 -4.34 0   

8q 8.00 1.00 -0.27 0   

9 9.20 1.00 1.16 1   

pentaf~1 15.00 1.00 -1.21 0   

11j 52.00 2.00   .16 .00 

11k 37.00 2.00   -1.13 .00 

11n 26.00 2.00   .44 .00 

11p 21.00 2.00   1.19 1.00 

11q 18.00 2.00   1.19 1.00 

11y 24.00 2.00   -1.44 .00 

12y 39.00 2.00   -3.49 .00 

15y 38.00 2.00   1.02 1.00 

16y 34.00 2.00   .82 1.00 

17y 20.00 2.00   -4.36 .00 

18y 31.00 2.00   1.80 1.00 

19y 24.00 2.00   2.75 1.00 

1m 40.00 2.00   1.19 1.00 

1y 33.00 2.00   -7.51 .00 

20y 16.00 2.00   -2.95 .00 



Hassan Sahebjamee et al. 299

Regular Paper
RRBS, 7(8) 2013

Compound IC50(nm)a 
real activity 

classb 
OUT values 
class 1and3 

Predicted 
activity 

class1and3 

OUT values 
class 2and3 

Predicted 
activity 

class2and3 
24 27.90 2.00   -1.86 .00 

25 35.20 2.00   -2.45 .00 

25y 22.00 2.00   -3.88 .00 

26 47.50 2.00   -1.42 .00 

26y 26.00 2.00   -4.82 .00 

2e 57.00 2.00   1.39 1.00 

2f 63.00 2.00   .76 1.00 

3 18.40 2.00   -4.84 .00 

6b 48.00 2.00   -4.25 .00 

6c 43.00 2.00   -5.67 .00 

6y 33.00 2.00   -3.88 .00 

7 18.10 2.00   -4.84 .00 

7a 38.00 2.00   1.87 1.00 

7b 42.00 2.00   1.47 1.00 

7c 54.00 2.00   .43 .00 

7d 26.00 2.00   1.89 1.00 

7e 29.00 2.00   .40 .00 

7h 64.00 2.00   -1.73 .00 

7q 35.00 2.00   1.81 1.00 

8b 31.00 2.00   1.92 1.00 

8c 49.00 2.00   .98 1.00 

8h 37.00 2.00   -.85 .00 

8i 70.00 2.00   -1.58 .00 

bza 47.00 2.00   .30 .00 

dcp 50.00 2.00   -1.52 .00 

ind 24.00 2.00   -.67 .00 

sulthi~1 43.00 2.00   -2.04 .00 

10y 285.00 3.00 -255.00 .00 -255.00 .00 

11a 135.00 3.00 .21 .00 .21 .00 

11b 112.00 3.00 -85.00 .00 -85.00 .00 

11c 106.00 3.00 -80.00 .00 -80.00 .00 

11d 83.00 3.00 -52.00 .00 -52.00 .00 

11e 139.00 3.00 -96.00 .00 -96.00 .00 

11f 79.00 3.00 -39.00 .00 -39.00 .00 

11g 136.00 3.00 -101.00 .00 -101.00 .00 

11h 73.00 3.00 -48.00 .00 -48.00 .00 

11i 113.00 3.00 1.75 1.00 1.75 .00 

24y 121.00 3.00 -88.00 .00 -88.00 .00 

2y 238.00 3.00 -197.00 .00 -197.00 .00 

3s 146.00 3.00 -117.00 .00 -117.00 .00 

3y 294.00 3.00 -247.00 .00 -247.00 .00 

4y 305.00 3.00 -276.00 .00 -276.00 .00 

5y 103.00 3.00 -74.00 .00 -74.00 .00 

6a 165.00 3.00 -141.00 .00 -141.00 .00 

6d 178.00 3.00 -146.00 .00 -146.00 .00 
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using multinomial logistic regression model. The ratio-
nal underlying this study was to use MLR to build the
most effective set of parameters which then were fed
into a well-established neural network. MLR analysis
of molecular descriptors was carried out using the
stepwise strategy in SPSS.

Model development and evaluation

In the first stage, MLR serves as a non-linear model
on the dataset to select significant parameters through
the �Self-consistency Test�. This test is an examination
for the self-consistency of a prediction method. Then
the ANNs, which act non-linearly in the last stage, were

fed by the outputs of MLR to predict the activity CAIX
inhibitors. The log (ki) of the compounds was used as
the dependent variable in model development. Also the
independent variables in each model were selected some
quantitative descriptors. In neural network based QSAR
models, we performed a leave 10 out procedure (cross-
validation) to avoid any possible bias in selecting test-
ing set individuals. The structures of all neural networks
were optimized for minimum root mean square error
(RMSE) as a performance benchmark.

Multinomial logistic regression model

The used multinomial logistic regression model is a

Compound IC50(nm)a 
real activity 

classb 
OUT values 
class 1and3 

Predicted 
activity 

class1and3 

OUT values 
class 2and3 

Predicted 
activity 

class2and3 
6e 160.00 3.00 -132.00 .00 -132.00 .00 

6f 280.00 3.00 -249.00 .00 -249.00 .00 

6g 450.00 3.00 -311.00 .00 -311.00 .00 

6h 500.00 3.00 -341.00 .00 -341.00 .00 

6i 500.00 3.00 -372.00 .00 -372.00 .00 

6j 500.00 3.00 -366.00 .00 -366.00 .00 

6k 500.00 3.00 -375.00 .00 -375.00 .00 

6m 72.00 3.00 -42.00 .00 -42.00 .00 

7f 230.00 3.00 -187.00 .00 -187.00 .00 

7g 100.00 3.00 -70.00 .00 -70.00 .00 

7i 79.00 3.00 -41.00 .00 -41.00 .00 

7j 85.00 3.00 -48.00 .00 -48.00 .00 

7k 80.00 3.00 -46.00 .00 -46.00 .00 

7m 135.00 3.00 -97.00 .00 -97.00 .00 

7n 500.00 3.00 -390.00 .00 -390.00 .00 

7o 120.00 3.00 -89.00 .00 -89.00 .00 

7p 106.00 3.00 -86.00 .00 -86.00 .00 

7y 245.00 3.00 -208.00 .00 -208.00 .00 

8f 205.00 3.00 -175.00 .00 -175.00 .00 

8g 89.00 3.00 -57.00 .00 -57.00 .00 

8j 84.00 3.00 -55.00 .00 -55.00 .00 

8k 78.00 3.00 -45.00 .00 -45.00 .00 

8m 120.00 3.00 -95.00 .00 -95.00 .00 

8n 500.00 3.00 -380.00 .00 -380.00 .00 

8o 95.00 3.00 -66.00 .00 -66.00 .00 

8p 81.00 3.00 -43.00 .00 -43.00 .00 

8y 264.00 3.00 -225.00 .00 -225.00 .00 

9y 269.00 3.00 -214.00 .00 -214.00 .00 
aIC50 is an experimental index reported in nanomolars (nM), represent the inhibition activity of the molecule toward carbonic
anhydrase.
bCompounds were regarded active (coded as 1) for IC50<15 and medium (coded as 2) for IC50<70 and weak (coded as 3) for
IC50<500.
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generalization of the logistic regression model. It is com-
monly used for data in which the dependent variable is
polytomous, and independent variables are numerical
or categorical predictors. As the binary dependent vari-
able can always be interpreted as the occurrence or
non-occurrence of characteristic, the logistic regression
model is an expression of the form

(1)

where â
0
 is the intercept and the â

i
�s denote the un-

known logistic regression coefficients of x
i
 parameters;

also Pr denotes the probability that characteristic will
occur. The quantity on the left side of Equation (1) is
called a logit. The model can be generalized in the case
where the dependent variables unlike a binary logistic
regression model, have more than two categories. For
such a simple model, a multinomial logistic regression
model with logit link can be represented as

(2)

In this model, the same independent variable appears
in each of the c categories, and the separate intercept,
â

0
(c), and slopes (or logit coefficients), â

i 
(c), are usu-

ally estimated for selected parameters in each contrast.
A way to interpret the effect of independent variables,
x

i
, on the probability of being in category c, is to use

predicted probabilities, Pr (c), for different values of x
i
:

(3)

Then, the probability of being in the reference category,
�0� (Type IV), can be calculated by subtraction:

(4)

The class with the highest probability is the final
prediction[26].

Artificial neural network model

Artificial neural networks (ANNs) are powerful
non-algorithmic models used vastly for classifying dif-
ferent types of data. Being trained from a number of
samples, a neural network will be capable of drawing
non-linear boundaries to put the new unobserved
samples into relevant classes. In this way, the selected
variables from multinomial logistic regression model
were used as input nodes for the ANN. this is sup-
posed to reduce the number of input nodes, simplify
the network structure and shorten the model building

time.
We used feed-forward with backpropagation al-

gorithm to train our networks. Using this algorithm, de-
scriptors of training cases are fed into the network. The
final outputs (O

jk
) estimated by the network are com-

pared with the real class of the cases (T
jk
), producing a

sum square error:

2)(
11




N

J

jkjk

M

K

OTSSE (5)

Where M is the number of training cases and N is the
number of output neurons. SSE is propagated back
into the network to adjust the weights. the training cases
are tested with new weights and the process is repeated.
Through such process, the SSE is minimized27. We used
the SSE as an index of network efficiency in optimizing
the number of hidden neurons in networks. To do so,
the number of hidden neurons was changed in every
network in order to develop networks generating the
minimal SSE. Finally, after such optimizing procedure,
the number of hidden layer units reached[15].

We used three layer networks. Each unit in the in-
put layer was fed by one independent variable which
has been selected by multinomial logistic regression
model. The final neural network architecture was con-
sisted of 22 units in input layer, 15 units in hidden layer
and 3 units in output layer. The activation function of
hidden layer units was logsig. Training has been per-
formed for 15000 epochs. The value of the learning
rate parameter has been set to 08. The software used
to build the neural networks was in-house written in the
MATLAB programming language.

Artificial neural networks are powerful non-linear
models used vastly for classifying different types of data.
A neural network is composed of few layers of neu-
rons. Neurons in adjusting layers are connected with
relative quantitative weights. These weights are randomly
chosen, and then are changed through the training pro-
cedure, so that the sum-square error (SSE) is mini-
mized. We used three layer networks. Each neuron in
the input layer was fed by one independent variable. A
bias neuron was added to the input as well as hidden
layers to avoid network collapse.

We used networks with a 5-x-3 structure. To ob-
tain the best classification results, the number of neu-
rons in the hidden layer and other parameters of the
ANN structure, including learning rates, training func-
tion and training epochs were optimized through a trial-
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and-error procedure. Each neuron in the network was
connected to all neurons in neighboring layer (s) through
adjustable weights. Network training is the process of
adjusting such weights somehow that the error is mini-
mized. The number of input layer neurons is equal to
the number of descriptors. We had three output layer
neuron, while the number of hidden layer neurons was
a matter of optimization. It is generally said that the ra-
tio of training pairs to the whole network weights should
be between 1 and 3[28]. Since the numbers of input and
output neurons are constant, the approximate number
of hidden neurons can be calculated using this rule. It is
said that if the ratio is less than 1, then the network
simply memorizes the train set or in other words, gets
over-trained; while if it exceeds 3, then the network
fails to find a relationship between dependent and inde-
pendent variables. The descriptor values were first
ranged between zero and one in order to ensure that
some descriptors are not weighted more heavily than
others due to their nature. The first layer only fed net-
work with the descriptors, while in hidden and output
layers, a sigmoid function acted on summation of in-
coming weights.

The data set was divided into two subsets: training
(75%) and test sets (25%). the test set is used to test
the trend of the prediction accuracy of the model trained
at some point of the training process. then, the training
set was used to optimize the network performance. the
training function �trainscg� in MATLAB was used to
train the network. the rationale for just using these de-
scriptors is their small number, which provides us with
the best classifier. models through avoiding variable re-
dundancy and overfitting problem of the network.
Overfitting problem or poor generalization capability
happens when a neural network overlearns during the
training period. The optimal network was trained and
tested using jackknife method.

The flexibility of ANN enables it to discover more
complex relationships in experimental data, when it is
compared with the traditional statistical models[29].

Model evaluation

Models were evaluated using some statistical indi-
ces. For calculating such indices, N

TP
 (true positive pre-

dictions), N
TN

 (true negative predictions), N
FP

 (false
positive predictions), and N

FN
 (false negative predic-

tions) were counted. The first index is called fraction

correct (FC)[30], which shows the fraction of com-
pounds correctly classified:

100))((  totalTPTN NNNFC (6)

False alarm rate (FAR)[30] represents the fraction of in-
active compounds that were wrongly classified. A high
FAR value increases the risk of detecting fake inhibi-
tors by the model. So this is an important index to be
noted when using an inhibition prediction model:

 100))((  TPTNFP NNNFAR (7)

Probability of detection (POD)[30] is another index rep-
resenting the fraction of active compounds being truly
classified. A high value of this index, guarantees not miss-
ing any active compound by the model; that is, it causes
as many active compounds as possible to be classified
correctly in the active class. POD is defined as:

 100))((  TPFPTP NNNPOD (8)

This study clarified the efficiency of using the statistical
model of multinomial logistic regression as a prepro-
cessor in determining effective parameters. Moreover,
the optimal structure of neural network can be simpli-
fied by a preprocessor in the first stage, thereby reduc-
ing the needed time for neural network training proce-
dure in the second stage and the probability of over
fitting occurrence decreased and a high precision and
reliability obtained in this way[31].

RESULTS AND DISCUSSION

QSAR using MLR

Descriptors are divided into groups such as consti-
tutional, topological, geometrical. Constitutional de-
scriptors are related to the number of atoms and bonds
in each molecule. Topological descriptors include va-
lence and non valence molecular connectivity indices
calculated from the hydrogen-suppressed formula of
the molecule, encoding information about the size, com-
position, and the degree of branching of a molecule.
Geometrical descriptors are calculated from 3-D atomic
coordinates of the molecule and comprise moments of
inertia, molecular volumes, molecular surface areas, and
gravitation indices[32].

In order to obtain a unified equation, we ignored
the misclassified cases. Then, we used the averages of
coefficients and constant values of equations suggested
for predicting the remaining cases in jackknife proce-
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dure. The following equations were obtained:
Y13 = -61+123 MSD+3.3 TI2+137.5

JGI4-20.5 MATS3e (9)

Y23= -32.5+71.6 MSD+2.1 TI2+66JGI4+3

nDB +7.7C028 -18 MATS4V (10)

Since the descriptors with greater coefficients are more
determining in regression equations, we can conclude
that according to this equation, the most important de-
scriptor are MSD and JGI4 and the least determining
one is TI2 and nDB and C028. According to this equa-
tion, the most important descriptors among all the 2D-
autocorrelation ones are weighted by the atomic mass,
electronegativity, and van der Waals volumes. Topo-
logical descriptor helps to differentiate the molecules
according mostly to their size, degree of branching, flex-
ibility and overall shape. MSD, Mean square distance
index (balaban) is contributing positively to the activity,
which suggests that substituents have smaller branching
will improve inhibitory activity[33-34]. JGI4 is belongs to

Galvez topological charge indices, which evaluate the
charge transfer between pairs of atoms and hence the
global charge transfer in the molecule. C-028 is the sec-
ond descriptor, appearing in the model. It is one of the
atom -centered fragment descriptors that describe each
atom by its own atom type and the bond types and
atom types of its first neighbors. The C-028 descriptor
displays R-CR-X. This atom centered fragment descrip-
tor is defined for each ring atom that has three neigh-
bors. In this case, R-CR-X can be defined as a central
carbon atom (C) on an aromatic ring that has one car-
bon neighbor (R) and one heteroatom neighbor (X) on
the same aromatic ring and the third neighbor outside
this ring is a carbon (R). The C-028 mean effect has a
positive sign. Hence, it was concluded that by increas-
ing the number of heteroatom (with R-CR-X format) in
molecules the value of this descriptor increased. TI2 is
Topological Second Mohar index. The number of
double bonds (nDB) is equal to the number of non-

Compound Ar 
11 
12 
13 
14 

Ph 
3-O2NPh 
4-O2NPh 

3,4-di-ClPh 
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Compound R1 R2 

24 H 3,5,5-trimethyl-2-yrazolino 

25 Me 3,5,5-trimethyl-pyrazolino 

26 H dimethylamino 
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No. R CAIX 

1a OH 6.4 

1b NH2 6 

1c NHMe 4.9 

1d NMe2 6.6 

1e NHCH2SO3Na 5.4 

1f N(Me)CH2SO3Na 3.5 

2a OH 6.1 

2b NH2 5.9 

2d NMe2 6.4 

2e NHCH2SO3Na 57 

2f N(Me)CH2SO3Na 63 
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Inhibitor R2 CAIX 

11aa Me2NCH2CH2 6.7 

11bb [O(CH2CH2)2N] CH2CH2 5.6 

11cc Me-[N(CH2CH2)2N] 4.8 

11dd [O(CH2CH2)2N] 6.7 

12aa Me2NCH2CH2 5.4 

12bb [O(CH2CH2)2N] CH2CH2 4.8 

12cc Me-[N(CH2CH2)2N] 5 

12dd [O(CH2CH2)2N] 6.4 

12ee PhCH2CH2 5 

12ff 2-Pyridyl- CH2 5.2 

12gg 4-H2NO2SC6H4CH2CH2 4.6 

13aa Me2NCH2CH2 6.1 

Compound R2 R3 R4 R6 CAIX 
6a Me H Me Me 165 
6b Me H Ph Me 48 
6c Et H Ph Et 43 
6d n-Pr H Ph n-Pr 178 
6e i-Pr H Ph i-Pr 160 
6f Me H Ph Ph 280 
6g Et H Ph Ph 450 
6h n-Pr H Ph Ph >500 
6i i-Pr H Ph Ph >500 
6j n-Bu H Ph Ph >500 
6k Ph H Ph Ph >500 
6m Me Me Me Me 72 
7a Me H Me Me 38 
7b i-Pr H Me Ph 42 
7c i-Pr H Me i-Pr 54 
7d Me H Ph Me 26 
7e Et H Ph Et 29 
7f n-Pr H Ph n-Pr 230 
7g i-Pr H Ph i-Pr 100 
7h Me H Ph Ph 64 
7i Et H Ph Ph 79 
7j n-Pr H Ph Ph 85 
7k i-Pr H Ph Ph 80 
7m n-Bu H Ph Ph 135 
7n t-Bu H Ph Ph >500 
7o Ph H Ph Ph 120 
7p Ph H H Ph 106 
7q Me Me Me Me 35 
8a Me H Me Me 14 
8b i-Pr H Me Me 31 
8c i-Pr H Me i-Pr 49 
8d Me H Ph Me 6 
8e Et H Ph Et 8 
8f n-Pr H Ph n-Pr 205 
8g i-Pr H Ph i-Pr 89 
8h Me H Ph Ph 37 
8i Et H Ph Ph 70 
8j n-Pr H Ph Ph 84 
8k i-Pr H Ph Ph 78 
8m n-Bu H Ph Ph 120 
8n t-Bu H Ph Ph >500 
8o Ph H Ph Ph 95 
8p Ph H H Ph 81 
8q Me Me Me Me 8 

Compound n R CAIX 

11a 0 CH3CO 135 

11b 0 CF3CO 112 

11c 0 EtCO 106 

11d 0 n-PrCO 83 

11e 0 i-PrCO 139 

11f 0 n-BuCO 79 

11g 0 t-BuCO 136 

11h 0 PhCO 73 
11i 0 MeSO2 113 
11j 0 PhSO2 52 

11k 0 4-AcNHC6H4SO2 37 

11m 1 PhSO2 40 

Compound n R CAIX 

11n 1 PhNH-C(=S) 26 

11p 2 PhNH-C(=S) 21 

11q 2 PhNH-C(=O) 18 

11r 2 4-H2NO2SC6H4NH- C(=S) 3 

11s 2 4-H2NO2SC6H4CO 12 

2s - PhNH-C(=O) 14 

3s - PhNH-C(=O) 146 
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aromatic double bonds. MATS3e describes the
autocorrelation of the atomic electronegativities by
Moran autocorrelation of lag 3 weighted by atomic
Sanderson electronegativities (MATS3e) and Moran
autocorrelation of lag 4 weighted by van der Walls vol-
umes (MATS4v). Similarly MAST4v the path connect-
ing a pair of atoms has length 4 and involves the atomic
van der Waals volumes as weighting scheme. Figure 3,
4 shows the plot of observed versus predicted Ki for
both the training data and the test set.

QSAR using ANNs

We started with a network that was supplied by
two descriptors that were selected by, multinomial lo-
gistic routine. This was a 2-x-3 network (two input neu-
rons, x hidden and three output neuron). Then we added
other descriptors and continued with two 3-x-3 as well
as a 4-x-3 networks. Finally, we finished our model
building with a 5-x-3 network using other two descrip-
tors (MATS3e and MATS4V) that were supposed to
be less effective. As can be seen from this TABLE 2,
evaluating results of the networks showed that the net-

Figure 3 : Plot of predicted versus observed IC50 for class 1, 3 Figure 4 : Plot of predicted versus observed IC50 for class 2, 3

works supplied with five descriptor, relatively offered
good predictive ability except MATS4V and MATS3e
descriptors. When MATS4V and MATS3e were added
to the input layer of this network the statistical indices
were deteriorated, that supported the assumption ex-
pressing the deteriorate of MATS4V and MATS3e
descriptors in their influence of the inhibition activity of
compound. The last network was constructed in order
to ensure the logistic judgment about the descriptors.
As a MLR and ANN, the structure and activity of com-
pounds were most effectively related by MSD and TI2
and JGI4 for class1, 3 and MSD and TI2 and JGI4
and nDB and C028 for class2, 3, respectively.

As was mentioned in Materials and methods, we
totally invented 15 networks. The number of neurons in
hidden layer was optimized in each network regarding
the least SSE rate. The indices FC, FAR, and POD
resulted by networks are separately illustrated in TABLE
3.

The optimal cutoff for the OUT values was found to
be 0 for class 1, 3 and -.11 for class 2, 3. So, the com-
pounds with predicted OUT < 0 were regarded as weak

Figure 2 : Chemical structures of compounds used in our dataset.
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and with OUT > 0 as active and OUT > -.11 as me-
dium. The model with FC=86% FAR = 1%, POD =
100% for class1, 3 and FC=65% FAR = 11%, POD =
87% for class2, 3 were a very good predictive tool.

The sulfonamide derivatives used in this study belong
to a wide variety of molecular family containing similar
number of sulfonamide groups, similar number of aro-
matic rings, and similar number of heterocyclic rings.
Names, types and definition of the descriptors suggested

Networks with different inputsa FC (%) FAR (%) POD (%) 

MSD-TI2-JGI4-nDB- C028-MATS4V-MATS3e 
Class1,3=92 
Class2,3=77 

Class1,3=6 
Class2,3=7 

Class1,3=89 
Class2,3=84 

MSD-TI2-JGI4-nDB-MATS4V-MATS3e 
Class1,3=91 
Class2,3=75 

Class1,3=6 
Class2,3=7 

Class1,3=88 
Class2,3=83 

MSD-TI2-JGI4- C028-MATS4V-MATS3e 
Class1,3=89 
Class2,3=78 

Class1,3=3.7 
Class2,3=4 

Class1,3=92 
Class2,3=9 

MSD-JGI4-nDB- C028-MATS4V-MATS3e 
Class1,3=88 
Class2,3=71 

Class1,3=8 
Class2,3=3 

Class1,3=85 
Class2,3=92 

MSD-JGI4-MATS4V-MATS3e 
Class1,3=66 
Class2,3=59 

Class1,3=25 
Class2,3=30 

Class1,3=66 
Class2,3=58 

MSD-TI2-JGI4-MATS4V-MATS3e 
Class1,3=84 
Class2,3=82 

Class1,3=12 
Class2,3=12 

Class1,3=80 
Class2,3=80 

TI2-JGI4-nDB- C028-MATS4V-MATS3e 
Class1,3=92 
Class2,3=75 

Class1,3=2.4 
Class2,3=2 

Class1,3=95 
Class2,3=92 

MSD-TI2-nDB- C028-MATS4V-MATS3e 
Class1,3=92 
Class2,3=73 

Class1,3=4 
Class2,3=6 

Class1,3=90 
Class2,3=85 

MSD-TI2-JGI4-nDB- C028-MATS3e 
Class1,3=94 
Class2,3=80 

Class1,3=2 
Class2,3=2 

Class1,3=95 
Class2,3=93 

MSD-TI2-JGI4-nDB- C028-MATS4V 
Class1,3=92 
Class2,3=82 

Class1,3=3 
Class2,3=4 

Class1,3=92 
Class2,3=90 

MSD-TI2-JGI4-nDB- C028 
Class1,3=93 
Class2,3=80 

Class1,3=4 
Class2,3=5 

Class1,3=91 
Class2,3=88 

MSD-TI2-JGI4-Ndb 
Class1,3=88 
Class2,3=70 

Class1,3=7 
Class2,3=9 

Class1,3=86 
Class2,3=79 

MSD-TI2-JGI4- C028 
Class1,3=80 
Class2,3=76 

Class1,3=2 
Class2,3=2 

Class1,3=93 
Class2,3=92 

TI2-nDB- C028 
Class1,3=74 
Class2,3=59 

Class1,3=12 
Class2,3=15 

Class1,3=77 
Class2,3=65 

MSD-TI2-JGI4 
Class1,3=89 
Class2,3=69 

Class1,3=9 
Class2,3=11 

Class1,3=83 
Class2,3=76 

TABLE 2 : Evaluating the results obtained by several neural networks

aThe networks differ in input neurons. Regarding the obtained results, we could conclude that MATS4V, MATS3e do not seem
to good effects on the network decision. So these two descriptors were found to be the less reliable ones in predicting the
inhibition activity of compounds.

Test Performance 
measures class1,3 class2,3 

Multinomial logistic 
regression 

   

 FC (%) 86 65 

 FAR (%) 1 11 

 POD (%) 100 87 

Neural networks    

 FC (%) 79 62 

 FAR (%) 17 21 

 POD (%) 78 74 

 

TABLE 3 : Prediction results obtained of two models.

Name Type Description Refrence 

MSD 
Topological 

indices 

mean square 
distance index 

(Balaban) 
[33,37] 

TI2 
2D matrix-based 

descriptors 
second Mohar 

index 
[33,37] 

JGI4 
2D 

autocorrelations 

mean topological 
charge index of 

order 4 
[33,37] 

nDB 
Constitutional 

indices 
Number of double 

bonds 
[33,37] 

C028 R--CR--X 
Atom-centred 

fragments 
[33,37] 

MATS3e 
2D 

autocorrelations 

Moran 
autocorrelation of 
lag 3 weighted by 

Sanderson 
electronegativity 

[33,37] 

MATS4v 
2D 

autocorrelations 

Moran 
autocorrelation of 
lag 4 weighted by 

van der Waals 
volume 

[33,37] 

TABLE 4 : Definition of the finally selected set of descriptors

and used in the final model are shown in TABLE 4. Syn-
thesis and inhibition assay of a larger number of inhibi-
tors, under the same experimental conditions as the stud-
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ied compounds, will also be helpful in this context.
QSAR studies provide deeper insight into the

mechanism of action of compounds that ultimately be-
comes of great importance in modification of the struc-
ture of compounds. In addition, QSAR studies also
provide quantitative models, which permit prediction
of activity of compounds prior to the synthesis[35]. Al-
though the resulted models were not capable to esti-
mate the exact value of ki for compounds, they had the
ability to classify the compounds into three active and
medium and weak classes efficiently. The study proved
the capability of MLR and neural network to deal with
this problem. The first method was easy and fast, and it
correctly selected more efficient descriptors. On the
other hand, the artificial neural network outperformed
the Multinomial Logistic Regression method through es-
tablishing the non-linear association between evaluated
descriptors and IC50.

In order to be comparable with results of similar
QSAR attempts, we reported RMSE values in normal
range of log (ki) as well. From an experimental point of
view, CA is a complicated enzyme and is not so easy to
assay. It has more than one isozyme. In this way, pos-
sible errors in reporting the ki values, due to assay dif-
ficulties, could adversely affect our QSAR results. In
spite of these facts, the RMSE values resulted by our
models are still good enough to make these models trust-
able in future predictions. This model has good statisti-
cal characteristics as evident from its R2=0.973 and
R2=0.963 values.

Equations 4 and 5 reveal that a higher value of
Balaban mean square distance index (MSD) and 4nd
order mean topological charge index (JGI4) are ad-
vantageous to enhance the activity. On the other hand,
a higher value number of double bonds (nDB), second
Mohar index (TI2) and Counts for certain structural
fragment, R-CH-X (descriptor C-028) are detrimental
to the activity. Thus the descriptors identified for ratio-
nalizing the activity give paths to modulate the structure
to a desirable biological end point. The topological
(TOPO) class descriptors are based on a graph repre-
sentation of the molecule and are numerical quantifiers
of molecular topology obtained by the application of
algebraic operators to matrices representing molecular
graphs and whose values are independent of vertex
numbering or labeling. They can be sensitive to one or
more structural features of the molecule such as size,

shape, symmetry, branching and cyclicity and can also
encode chemical information concerning atom type and
bond multiplicity. The 2D autocorrelations are molecu-
lar descriptors which describe how a considered prop-
erty is distributed along a topological molecular struc-
ture. The 2D-AUTO descriptors have their origin in
autocorrelation of topological structure of Broto-Moreau
(ATS), of Moran (MATS) and of Geary (GATS). The
computation of these descriptors involve the summa-
tions of different autocorrelation functions correspond-
ing to the different fragment lengths and lead to differ-
ent autocorrelation vectors corresponding to the lengths
of the structural fragments. Also a weighting compo-
nent in terms of a physicochemical property has been
embedded in this descriptor. Atom centered fragments
(ACF descriptors) are simple molecular descriptors
defined as the number of specific atom types in a mol-
ecule and their calculation is based on the knowledge
of the molecular composition and atom connectivity.
Even descriptors that at the first look seem not to be
related to the 3D molecular structure, like the number
of double bonds or the number of CHR3 groups, in
fact, do identify molecular sub-fragments that can be
consider as �structure making� factors. For example,
the number of double bonds between two carbon at-
oms is related with the cis-trans isomerism or may show
the existence of an aromatic ring. The number of double
bonds may also be related with the hydrophobicity and
reactivity of the considered compounds. Another sig-
nificant structural element, which contains a double bond,
is the carbonyl C=O group[36]. The structure-activity
correlations obtained with the descriptors suggest that
less branched and saturated structural templates would
be better for the activity.

The structural insights obtained from the present
study are expected to be useful in the future design of
new compounds with potentially higher inhibition activ-
ity against carbonic anhydrase CAIX.

CONCLUSIONS

To achieve a significant correlation, it is essential
that proper descriptors are used. A wide variety of mo-
lecular descriptors are used in QSAR models[37].  How-
ever, as the number of descriptors increases, the model
becomes complicated, and its interpretation is difficult
when many variables are used. Thus, the application of
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such techniques generally involves variable selection for
building well-fitted models. Many different methods have
been used to select the significant descriptors for cali-
bration purposes. On the other hand, artificial neural
networks (ANNs) are popular in QSAR models as a
result of their success where complex nonlinear rela-
tionships exist among data[38-39]. The ANN model was
primarily developed for predictive ability and classifi-
cation. The descriptors identified in MLR analysis have
highlighted the role of mean square distance index
(MSD), topological charges (JGI4), certain structural
fragments (C-028), the second Mohar index (TI2) have
positive influence on the inhibitory effect. Based on the
MLR equation, which indicates the dependence and
the extent of influence of the descriptors to the inhibi-
tory activity, various structural modifications can be pro-
posed for designing of novel structures with desired
characteristics.

The results of two QSAR models tell us that nonlin-
ear selection methods and activity prediction models do
better than their linear counterparts. This fact � that is
also confirmed by other QSAR attempts[27,28,40] -is due
to complicated relations between structure and activity
of compounds. From the above discussion, it can be
seen that both approaches are statistically meaningful.
The results obtained show that nonlinear regression ana-
lyze is useful tools to distinguish between the inhibitory
activities of sulfonamides toward CAIX isozyme.
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