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ABSTRACT 

This paper presents the multi-response optimization of Wire EDM process parameters using grey 
based Taguchi method. Taguchi’s L9 orthogonal array design technique has been employed for 
experimental investigation. The different machining parameters (Pulse on time, Pulse off time, Peak 
current, Wire feed) on Material Removal Rate (MRR) and Surface Roughness of AA7075/ TiB2 (3wt%) 
Metal Matrix Composite were optimized. Taguchi’s Signal-to-Noise (S/N) ratio are determined based on 
their performance characteristics. A grey relation grade is obtained by using S/N ratio. Based on grey 
relational grade value, optimum levels of parameters have been identified by using response table and 
response graph and the significant contributions of controlling parameters are estimated using analysis of 
variances (ANOVA). Confirmation test is conducted for the optimal machining parameters to validate the 
test result. The proposed method is having prediction accuracy and competency.   

Key words: Wire EDM process, ANOVA, Taguchi’s method. 

INTRODUCTION 

Aluminum Metal Matrix Composites (AMMCs) with ceramic particulate 
reinforcement have gained the attention of the present era. Aluminum metal matrix 
composites emerged from the perpetual need for lighter weight, higher performance 
components in aerospace, automotive and aircraft industries. AMCs are progressively 
replacing conventional aluminum alloys in many applications due to its superior properties 
including high wear resistance, low thermal expansion, high strength to weight ratio, etc.1,2 
The ceramic particles SiC and Al2O3 were extensively used as reinforcements over a long 
period since the inception of AMCs. Several kind of potential ceramics particles such as TiC, 
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SiO2, ZrB2, B4C etc. reinforcements are used to produce aluminum matrix composites 
(AMCs).   

These kinds of composites are generally hard to machine by conventional machining 
techniques. It causes serious tool wear due to the presence of abrasive reinforcing particles 
and thus reduced tool life3,4. However, non-traditional machining processes have been used 
successfully by researchers to machine MMCs5. Wire Electric Discharge Machining 
(WEDM) finds extensive applications in various fields like tool and die manufacturing 
industries, automotive industries and space applications6. The wire electrode and work piece 
never make contact therefore, there is virtually no cutting force on the part. Hence free from 
mechanical stresses.  

Garg et al.7 reported a detailed survey on review of wire EDM on Metal Matrix 
Composites stated that there is not so much work in WEDM on MMC’s. Sathiskumar et al.8 
reported a machining of Al 6063 composite reinforced with SiCp (5,10 and 15 vol%) and 
observed that the MRR decreases with increase in the volume fraction of reinforcements 
(SiCp) and the surface roughness Ra increases with increase in reinforcements in the MMC’s.  
Nilesh & Brahmankar9 investigated the performance parameters such as kerf width, cutting 
rate and surface finish of the MMC Al6061/Al2O3p (10 and 22 vol%) and concluded that the 
volume fraction, pulse on-time, pulse off-time and servo reference voltage plays a vital role 
in cutting speed, surface roughness and kerf width. M. Rozenek et al.10 carried out 
machining studies on AlSi7Mg/SiC and AlSi7Mg/Al2O3 MMC’s and concluded that 
machining feed rate of WEDM cutting composites significantly depends on the kind of 
reinforcement. Mahapatra & Amar11 investigated about the performance measures such as 
surface roughness, kerf and MRR of D2 tool steel on WEDM by optimizing the process 
parameters using Taguchi’s method. Selection of optimum machining process parameter 
combinations for obtaining higher material removal rate and better surface finish is a 
challenging task when processed in WEDM. 

Optimization problems are solved by conventional and non-conventional 
optimization techniques14. Conventional techniques may be broadly classified into two 
categories: In the first category, experimental techniques that include statistical design of 
experiment, such as Taguchi method, and response surface design methodology. In the 
second category, iterative mathematical search techniques, such as linear programming, non-
linear programming and dynamic programming algorithms are included. Non-conventional 
meta-heuristic search-based techniques, which are used by researchers in recent times are 
based on genetic algorithm (GA), tabu search (TS), simulated annealing (SA). 
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The approach adopted by Taguchi is popular for solving optimization problems in 
the field of manufacturing engineering12,13,16-18. Taguchi method utilizes experimental design 
called orthogonal array design, and S/N ratio which serve the objective function to be 
optimized within experimental domain. Traditional Taguchi method solve only single 
response optimization problem. But most of real time engineering application problems are 
multi-response in nature. In multiple response optimum setting of control factors, it can be 
observed that an increase/improvement of one response may cause change in another 
response, beyond the acceptable limit. To solve multi-response optimization problems, it is 
convenient to convert all the objectives into an equivalent single objective function. This 
equivalent objective function, which is the representative of all the quality characteristics of 
the product, is to be optimized. The more frequently used approach is to assign a weighting 
for each responses. The weighted Signal to Noise ratio of each quality characteristics is used 
to compute the performance measures15. In practice it is not competent because it uses 
engineering judgment and past experiences to optimize multiple responses. The combined 
approaches are proposed by many researchers to overcome these limitations18,25,26.  

The grey relational analysis theory, initialized by Deng20, makes use of this to handle 
uncertain systematic problem with only partial known information. This theory is used for 
solving the complicated interrelationships among the multiple responses. The grey relational 
coefficient can express the relationship between the desired and actual experimental results. 
A grey relational grade is obtained to evaluate the multi-response. Optimization of the 
complicated multi-response can be converted into optimization of a single grey relational 
grade. The integrated grey based Taguchi method combines advantages of both Taguchi 
method and grey relational analysis. This method was successfully applied to optimize the 
multi-response of complicated problems in manufacturing processes19,21,27,28. Furthermore, 
ANOVA is performed to see which process parameters are statistically significant22. In this 
study, the effect of WireEDM process parameters on MRR and surface roughness are 
reported using grey based Taguchi method.  

Grey based taguchi method 

The integrated Grey based Taguchi method combines the algorithm of Taguchi 
method and grey relational analysis to determine the optimum process parameters for 
multiple responses.  

Taguchi method 

The concept of the Taguchi method is that the parameter design is performed to 
reduce the sources of variation on the quality characteristics of product, and reach a target of 
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process robustness15. It utilizes the orthogonal arrays from experimental design theory to 
study a large number of variables with a small number of experiments12,13. Furthermore, the 
conclusions drawn from small scale experiments are valid over the entire experimental 
region spanned by the control factors and their level settings. A loss function is defined to 
calculate the deviation between the experimental value and the desired value. The value of 
the loss function is further transformed into an S/N ratio. Usually, there are three categories 
of performance characteristic in the analysis of the S/N ratio, i.e. lower-the-better, higher-
the-better, and nominal-the-best. The S/N ratio ηij for the ith performance characteristic in the 
jth experiment can be expressed as:  

 ηij = − 10 log (Lij) …(1) 

The loss function Lij for higher-the-better performance characteristic can be 
expressed as: 
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Lij-Loss function of the ith process response in the jth experiment, k- number of tests, 

yijk-Experimental value of the ith performance characteristic in the jth experiment at 
the   kth tests 

For lower-the-better performance characteristic, the loss function Lij can be 
expressed as: 
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For nominal-is-best performance characteristics, the S/N ratio can be expressed as: 

 ( )210 log /ij yη σ=  …(4) 

The S/N ratio for each level of process parameters is computed based on the S/N 
analysis. Regardless of the category of the performance characteristic, a larger S/N ratio 
corresponds to a better performance characteristic. This S/N ratio value can be considered 
for the optimization of single response problems. However, optimization of multi-response 
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cannot be straightforward as in the optimization of a single response23,24. The higher S/N 
ratio for one response may correspond to the lower S/N ratio for another response. To 
overcome the limitation combined approaches are proposed by researchers. In this, grey 
based Taguchi method is adopted to optimize the multi-response.  

Grey relational analysis 

The grey relational analysis based on the grey system theory can be used to solve the 
complicated interrelationships among the multiple responses effectively. In a grey system, 
some information is known and some information is unknown. It is applied in optimization 
of WEDM process, EDM process, chemical-mechanical polishing process and drilling 
operation with multi-responses18,19,21,26. 

Data pre-processing is the first stage in grey analysis since the range and unit in one 
data sequence may differ from the others. Data pre-processing is a means of transferring the 
original sequence to a comparable sequence. Depending on the characteristics of a data 
sequence, there are various methodologies of data pre-processing available for this analysis. 

Experimental data yij is normalized as Zij (0 ≤ Zij ≤1) for the ith performance 
characteristics in the jth experiment can be expressed as:   

For S/N ratio with Larger-the-better condition 

 

( )
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For S/N ratio with smaller-the-better 
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For S/N ratio with nominal-the-best 

 

( Target) min( Target , 1, 2,...... )
max( Target , 1, 2,..... ) min( Target , 1, 2,...... )

ij ij

ij ij

y y i n
Zij

y i n y i n
− − − =

=
− = − − =

 …(7) 

According to Deng20 [i], larger normalized results correspond to better performance 
and the best normalized result should be equal to one. Then, the grey relational coefficients 
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are calculated to express the relationship between the ideal (best) and the actual 
experimental results.  

The grey relational Co-efficient γij can be expressed as – 

 

min max
( ) maxij

oj k
γ Δ + ξΔ

=
Δ + ξΔ

 …(8)  

Where, 

a. j = 1,2…n; k = 1,2…m, n is the number of experimental data items and m is the 
number of responses. 

b. yo(k) is the reference sequence (yo(k) = 1, k = 1,2…m); yj(k) is the specific 
comparison sequence. 

c. ( ) ( )oj o jy k y kΔ = − = The absolute value of the difference between yo(k) and 
yj(k) 

d. min min min ( ) ( )o j
j i k

y k y k
∀ ∈ ∀

Δ = −  is the smallest value of yj(k) 

e. max max max ( ) ( )o j
j i k

y k y k
∀∈ ∀

Δ = −  is the largest value of yj(k) 

f. ξ is the distinguishing coefficient which is defined in the range 0 ≤ ξ ≤ 1 (the 
value may adjusted based on the practical needs of the system) 

The Grey relational grade jγ  is expressed as: 

 1

1 m

j ij
ik
γγ

=

= ∑  …(9) 

Where jγ  is the grey relational grade for the jth experiment and k is the number of 

performance characteristics. The grey relational grade shows the correlation between the 
reference sequence and the comparability sequence. The evaluated grey relational grade 
varies from 0 to 1 and equals 1 if these two sequences are identically coincident. The higher 
grey relational grade implies the better product quality; on the basis of grey relational grade, 
the factor effect can be estimated and the optimal level for each controllable factor can also 
be determined. The structure of the integrated grey based Taguchi algorithm is illustrated in 
Fig. 1. 



 C. Ahilan and H. B. M. Rajan: Optimization of MRR and Surface…. 

 

1032 

 
Fig. 1: Structure of grey based taguchi method 

Determination of optimal machining parameters 

Experimental details 

MMC’s used in this process AA7075/TiB2 (3wt %) are fabricated by the in-situ 
process. Detailed fabrication procedure and in situ TiB2 formation of particles are available 
elsewhere29,30. The material composition of unreinforced AA7075 is given in Table 1. Rough 
cut machining of unreinforced AA7075 and MMC’s are done by Electronica Sprint cut 
model EPULS 40A DLX wire EDM. The brass wire of 0.25 mm diameter is taken as 
cathode. De-ionized water is used as dielectric fluid. The work piece is rectangular in shape 
with 6mm thickness. Photograph of the composite AA7075/TiB2 (3% wt) is shown in Fig. 2 
and 3 shows the photograph of machined piece. 

Table 1: Composition of AA7075-T6 

 Al Zn Mg Cu Cr Fe Si Ti Others 

Weight % 90.4 5.26 2.11 1.48 0.22 0.2 0.10 0.06 Balance 
 

  
Fig. 2: Prepared casting in plate form 

with different wt% of TiB2 
Fig. 3: Photograph  of  Machined work 

piece sample 
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From the outcomes of literature review, it is understood that the process parameters 
which made significant impact on the performance are peak current pulse on time, pulse off 
time and wire feed. The experiments were conducted as per the Taguchi’s L9 orthogonal 
array. The levels of the process parameters and their orthogonal array with process 
parameters values are given in Table 2 and 3. 

Table 2: WEDM Process parameters table  

S. No. Parameter Symbol Unit Level 1 Level 2 Level 3 

1 Pulse-on time A (Ton) µs 120 125 130 
2 Pulse-off time B (Toff ) µs 45 50 55 
3 Peak current C (Ip) A 150 190 230 
4 Wire feed D (F) m/min 8 9 10 

Table 3: Taguchi’s L9 orthogonal array and process parameters values 

E
xp

er
im

en
t N

o.
 Orthogonal array (L9) Output responses 

Pulse on Pulse off Peak Wire Material 
removal rate Surface 

roughness 
Time (Ton) Time (Toff) Current (Ip) Feed (F) (MRR) 

µs µs (amps) (m/min) g/min Ra 

1 1 1 1 1 0.0532 3.38 
2 1 2 2 2 0.0525 4.06 
3 1 3 3 3 0.0598 3.74 
4 2 1 2 3 0.0545 3.38 
5 2 2 3 1 0.0536 4.52 
6 2 3 1 2 0.0462 3.33 
7 3 1 3 2 0.0488 3.51 
8 3 2 1 3 0.0488 3.83 
9 3 3 2 1 0.0472 3.22 

Optimization of machining parameters 

The output parameters used to assess the WEDM performance are MRR and Ra. 
MRR can be calculated by the following formula[11, 31]. 
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 MRR = Vc B t ρ, g/min  (10) 

Where,   Vc – Cutting speed, mm/min  

   B – Width of cut, mm  

    t –  Work piece thickness, mm 

   ρ –  Density of the composite kg/m3 (3% - 2754.6) 

Surface roughness of WEDM machined components was measured using Mitutoyo 
Surftest SJ-210. Surface roughness of the three sides of the machined surface was measured 
and the average value was taken.  

Initially, the S/N ratios for a given responses are computed using one of the (1), (2), 
(3) and (4) depending upon the type of quality characteristics. Surface roughness have 
lower-the-better and MRR have higher-the-better criterion.  

The normalized values for each response S/N ratios are estimated using (5), (6) and 
(7). The computed S/N ratios for each quality characteristic and the normalized values of 
S/N ratios are shown in Table 4.  

Table 4: S/N Ratios and grey relational coefficients of responses and grey relational 
grade  

Exp. 
No. 

S/N ratios Normalized values 
of S/N ratios 

Grey relational 
coefficient of Grey 

relational 
grade MRR Surface 

Roughness MRR Surface 
Roughness MRR Surface 

Roughness 

1 -25.483 -10.58 0.5472 0.8596 0.5248 0.7807 0.6528 
2 -25.589 -12.17 0.4996 0.3151 0.4998 0.4220 0.4609 
3 -24.471 -11.45 1.0000 0.5616 1.0000 0.5328 0.7664 
4 -25.271 -10.58 0.6420 0.8596 0.5828 0.7807 0.6818 
5 -25.421 -13.09 0.5748 0.0000 0.5404 0.3333 0.4369 
6 -26.706 -10.44 0.0000 0.9075 0.3333 0.8439 0.5886 
7 -26.237 -10.90 0.2098 0.7500 0.3875 0.6667 0.5271 
8 -26.228 -11.66 0.2137 0.4897 0.3887 0.4949 0.4418 
9 -26.525 -10.17 0.0809 1.0000 0.3523 1.0000 0.6762 
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Grey relational coefficient for each response has been calculated using (8). The 
value for ξ is taken as 0.5 since both the process parameters are of equal weight. The results 
are shown in Table 4. The grey relational grade can be calculated by using (9), which is the 
overall representative of both the responses shown in Table 4. Now, the multi-response 
optimization problem has been transformed into a single equivalent objective function 
optimization problem using this approach. The higher grey relational grade is said to be 
close to the optimal. The mean response table for overall grey relational grade is shown in 
Table 5 and is represented graphically in Fig. 4. The mean grey relational grade for the 
parameters at levels 1, 2 and 3 can be calculated by averaging the grey relational grades for 
the experiments 1-9. With the help of the Table 5 and Fig 5, the optimal parameter 
combination has been determined. The optimal factor setting condition is A1B3C2D2. Using 
the grey relational grade value, ANOVA is formulated for identifying the significant factors. 
The results of ANOVA are presented in Table 5. From ANOVA, it is clear that Toff (74.5%) 
influences more on Wire EDM of AA7075/TiB2 (3wt %) followed by Wire feed (14.28%), 
and Ton (8.5%). 

Table 5: Response table (mean) for overall grey relational grade 

Factors Level-1 Level-2 Level-3 

A 0.6267 0.5691 0.5484 

B 0.6205 0.4465 0.6771 

C 0.5611 0.6063 0.5768 

D 0.5547 0.6627 0.5707 

 
Fig. 4: The response graph for each level of machining parameters 
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Table 6: Results of the anova 

Source of 
variation 

Degree of 
freedom 

Sum of 
squares 

Mean 
square 

F 
ratio 

p –
Value 

Contribution 
(%) 

Ton 2 0.010 0.0049 3.295 8.50 

Toff 2 0.087 0.0433 28.877 74.50 

IP 2 0.003 0.0016 

Wire Feed 2 0.017 0.0083 5.534 14.28 

Error (IP) 2 0.003 0.0015 2.72 

Total 8 0.116 100.00 

Predicted optimum condition 

In order to predict the optimum condition, the expected mean at the optimal settings 
(μ) is calculated by using the following model. 

 gg2231 T3DCBAμ ×−+++=  …(11) 

Where, ,A1  ,B3 2C  and 2D  are the mean values of the grey relational grade with the 
parameters at optimum levels and ggT is the overall mean of average grey grade. The 

expected mean (μ) at optimal setting is found to be 0.7702. 

Confidence interval (CI) is calculated as 

 

1 1(1, )e e
eff

CI F f V
n Rα

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦
 …(12) 

        = ± 0.2156 

Where, Fα (1, fe) is the F ratio at a significance level of α%, α is the risk, fe is the 
error degrees of freedom, Ve is the error mean square, neff is the effective total number of 
tests and R is the number of confirmation tests 

Total number of observations
1+Total degrees of freedom associated with items used in estimating effn

μ
=  …(13) 
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Therefore 95% confidence interval of the predicted optimum condition is given by 
following model, where μ = the Grey relational grade values after conducting the 
confirmation experiments with optimal setting point, i.e., A1B3C2D2 

(0.7702-0.2156) <  μ  < (0.7702 + 0.2156) 

                                                     (0.5546) <  μ  < (0.9858) 

Confirmation test 

Once the optimal level of the process parameters has been determined, then the final 
step is to predict and verify the improvement of the responses using the optimal level of 
process parameters. Table VII shows the comparison of the multi-response for initial and 
optimal machining parameters. The initial designated levels of machining parameters are A1, 
B2, C2 and D2 which is the second experiment shown in the Table III. As noted from Table 
VII, the surface roughness Ra is decreased from 4.06 µm to 3.42 µm and the MRR is 
increased from 0.0525 g/min to 0.0582 g/min respectively. The estimated grey relational 
grade is increased from 0.5063 to 0.7849, which is the largest value obtained in all the 
experimental results in Table IV. It is clearly shown that the multi-responses in the Wire 
Electrical Discharge Machining process are together improved by using this method. 

Table 7: The comparison results of initial and optimal wire EDM responses 

Initial Wire EDM parameters 
Optimal Wire EDM parameters 

Prediction Experiment 

Levels                                              A1B2C2D2 A1B3C2D2 A1B3C2D2 

MRR (g/min),                                       0.0525 - 0.0582 

Surface roughness (Ra)                          4.06 - 3.42 

Taguchi based grey relational grade   0.5063 0.7702 0.7849 

Improvement of taguchi based grey relational 
grade 0.2639 0.2786 

CONCLUSION 

Experiments are designed and conducted on Wire Electrical Discharge Machine with 
AA7075/TiB2 (3 wt %) as work material to optimize the machining parameters. The MRR 
and surface roughness are the responses. The proposed Grey based Taguchi method is 
constructive in optimizing the multi-responses. It is identified that Toff (74.5%) influences 
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more followed by Wire feed (14.28%), and Ton (8.5%). Confirmation test results proved that 
the determined optimum condition of WireEDM machining parameters satisfy the real 
requirements. 
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