
Optimization of desalination wastewater treatment unit performance;
Experimental investigation accompanied with artificial neural network and

adaptive neural fuzzy interferences modeling

INTRODUCTION

Direct drainage of the concentrated brine wastewa-
ter of desalination units into sea, could cause salinity and
thermal shocks to aqua environment as mentioned[28].
But if the concentrated brine wastewater is pretreated in
basic softening process, it can be used in order to pro-
duction of salt and potable water. Total hardness which
is caused by Mg2+ salts and Ca2+ salts, are removed and
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production of Sodium Chloride becomes possible dur-
ing pretreatment process[10]. Usage of Sodium Carbon-
ate and Sodium Hydroxide or Calcium Hydroxide in
wastewater, vanishes the temporary and permanent hard-
ness as Magnesium Hydroxide and Calcium Carbonate
compounds. These particles are small and time is needed
for the sedimentation as demonstrated[32,38]. Required time
for coagulation, flocculation and sedimentation steps will
be short enough and also the turbidity of the product is
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ABSTRACT

Almost high salinity effluent stream of desalination units is drained into the
sea or dispersed on soil breaking the aqua salt concentration balance and
also increase salt content of sea ecosystem or soil. So it is concerned with
environmental engineering, corrosion engineering, control engineering,
chemical engineering and etc. So zero discharge desalination (ZDD) plants
have been proposed with a view of reaching salt and water instead of
hazardous saline wastewater. Predicting wastewater pretreatment
performance (effluent total hardness, CO

2 
content and electrical conductivity)

as the first step in ZDD plants is considered in this work both experimentally
(on a pilot plant) and mathematically (modeling with artificial neural network
and adaptive neuro fuzzy inference system). So, optimum operating
conditions (150 cc Al

2
(SO

4
)

3
 as coagulant, mixing rate in first pretreatment

reactor= 110 rpm, 600 cc NaOH and 450 cc Na
2
CO

3
 as additives) are

recognized, then optimal NN architecture (three layer feed forward back
propagation network with 10 neurons in hidden layer, Levenberg-Marquardt
algorithm is as network training function, tangent sigmoid transfer function)
and also optimal ANFIS architecture (five layers with six neurons in two
hidden layers, two Bell membership functions and four rules) are determined.
The results confirm predictive modeling by ANN is most efficient comparing
with ANFIS in prediction of performance.
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minimized By using mineral coagulants in special condi-
tions. Determination of the optimized amounts of So-
dium Carbonate, Sodium Hydroxide, suitable conditions
of the pretreatment process, type and dosage of coagu-
lant, have to be studied and evaluated to reach the higher
yield and minimize total hardness.

Published papers in the field of pretreatment pro-
cess of wastewater from a desalination unit are scarce
in the literature and there is not enough information about
this to predict the performance of pretreatment units. In
the other hand wastewater pretreatment process is one
of unit in zero discharge desalination plants.

In recent years, neural networks have been used as
a powerful modeling tool in various pretreatment pro-
cesses to predict the unit performance; some features
of previous studies are summarized in TABLE 1. These
are obtained from TABLE 1;
1) Most popular form of neural network in use is feed

forward neural network.
2) No record for modeling of pretreatment of desali-

nation wastewater unit by neural network is found
in the literature.

3) Back propagation algorithm is also efficient in pre-
diction networks.

TABLE 1: Researchers� studies in modeling of pretreatment process of wastewater by neural network

 Reference Year Model type Application 

1 Zvi Boger [5] (1992) 
Back propagation feed forward neural 
network 

Wastewater Treatment Plant 
Operation 

3 Spall et al.[33] (1997) Network model. Wastewater quality predication system 

4 Zhu et al. [47] (1998) Fuzzy systems and neural networks Wastewater treatment 

5 
Tay et al. [35, 
36] 

(1999, 
2000) 

Fuzzy modeling, Back propagation 
neural network 

Anaerobic biological wastewater pretreatment 

6 
Belanche et al. 
[3] 

(2000) 
Feed-forward net 
time-delay neural networks 

Wastewater treatment plants 

7 
Gontarski et 
al.[14] 

(2000) 
Feed-forward back propagation neural 
network 

Industrial treatment plant 

8 Lee et al.[17] (2002) Hybrid neural network Industrial waste water treatment 

9 
Timothy  et  
al.[37] 

(2003) 
Kohonen Self-Organising Feature 
Maps (KSOFM) neural network 

Municipal wastewater treatment plant 

10 
Zeng G.M. et al. 
[45] 

(2003) Back-propagation neural network 
Paper mill 
wastewater treatment 

11 
Hamed et al. 
[15] 

(2004) Feed forward neural network Waste water treatment plan 

12 
Onkal-Engin et 
al. [25] 

(2005) 
Artificial Neural Network (ANN) 
trained with a back-propagation 
algorithm 

Biochemical Oxygen Demand (BOD) values of 
samples from wastewater treatment plant 

13 Ozer Cinar [8] (2005) Kohonen self-organizing feature maps 
Pelham wastewater biological oxygen demand 
(BOD), total suspended solids (TSS) and fecal 
coliform 

14 Lee et al. [18] (2005) 
Feedforward back-propagation neural 
network 

Cokes wastewater treatment plant 

15 Cinar et al. [9] (2006) Cascade-forward back-propagation 
Treating cheese 
whey wastewater 

16 Chen et al. [6] (2007) 
Back propagation neural networks 
(BPN) algorithm 

Wastewater Treatment Process 

17 Majlli et al.[23] (2007) 
Back propagation, artificial neural 
network (ANN) 

Wastewater treatment plants performance 

18 
Parthinban et 
al.[28] 

(2007) Feed-forward neural network Starch wastewater treatment 

19 
Rangassamy et 
al. [31] (2007) Multi layer feed forward perceptron Starch wastewater treatment 

20 
Macho´n et al. 

[19] 
(2007) Feed-forward neural network Coke wastewater nitrification 

21 Yu et al.[43] (2008) 
Back propagation artificial neural 
network models 

Wastewater reuse applying ORP/pH monitoring 
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 Reference Year Model type Application 

22 
Torrecilla et al. 
[38, 39] 

(2007, 
2008) 

Feed-forward back propagation neural 
network 
 

Olive oil mill wastewater 

23 Suh et al. [34] (2009) Back propagation learning algorithm 
Scale activated-sludge wastewater 
treatment plant 

24 Aber et al. [1] 
(2009) 

 
Feed forward back propagation network 

Removal of Cr(VI) from synthetic and 
real wastewater 

25 Mingzhi et al. [21] (2009) Fuzzy neural networks 
Biofilm wastewater treatment 
Process 

26 Mingzhi et al. [22] 
(2009) 

 
Feed-forward back propagation algorithm Paper mill wastewater treatment 

27 Purkait et al. [30] (2009) Feed-forward network Leather plant effluent 

28 Pai et al. [26] (2009) Neuron fuzzy inference system (ANFIS) 
Hospital wastewater treatment plant 
effluent 

29 Chen z. et al. [7] (2009) Back propagation neural network 
Wastewater treatment and reuse in 
submarine cabin for long voyage 

30 
Sadrzadeh et al. 
[32] 

(2009) 
Feed-forward back propagation neural 
network 

Pb2+ removal from wastewater using 
electrodialysis 

31 Basha et al. [3] (2010) 
Feed-forward back propagation neural 
network 

Chemical industry effluent 

32 Fang et al. [13] (2010) 
Feed-forward back-propagation 
NN 

Municipal 
wastewater treatment plant 

33 
Waewsak et al. 
[41] 

(2010) 
Neural-fuzzy control system, neural network 
with back propagation algorithm 

Wastewater treatment and biogas 
production, 

34 Nandi et al. [24] (2010) 
Back propagation-based multi-layer feed 
forward artificial neural network 
(ANN) model 

Treatment of oily wastewater using low 
cost ceramic 
Membrane 

35 Turan et al. [40] (2011) Feed forward back propagation network with 
Cu(II) 
from industrial leach ate by pumice 

36 
. Silvia Curteanu et 
al. [10] 

(2011) 
Feed-forward back propagation neural 
network 

Electrolysis process in wastewater 
treatment 

37 
Pendashteh et al 
[29] (2011) 

A feed-forward neural network 
trained by batch back propagation algorithm Treating hyper saline oily wastewater 

38 Pai et al. [27] (2011) 
Adaptive neuron fuzzy inference system 
(ANFIS) 

Wastewater treatment plant of industrial 
Park 

39 Bhatti et al. [4] (2011) RSM and ANN modeling 
Removal of copper from synthetic 
wastewater 

Although, ANFIS is a powerful modeling tool to
predict the performance of nonlinear process, but this
has not been considered as much as artificial neural net-
work.

This work focused on the prediction of performance
of one step in zero discharge desalination plant which is
desalination waste water pretreatment. The goal of this
step is softening high salinity wastewater from a petro-
chemical desalination plant and preparing it to produce
salt and water instead of drainage into sea. So, natural
salt concentration of sea and soil doesn�t be increased

by desalination wastewater. This subject can be inter-
esting as a view of sciences related to corrosion, con-
trol, environmental, chemical and etc sciences. Both
experimental work and modeling are applied to opti-

mize the performance prediction of pretreatment pro-
cess.

Modeling is done by ANN and ANFIS which are
powerful adaptive models in prediction and optimiza-
tion of processes, based on experimental data.

MATERIALS AND METHOD

Optimum amounts of each coagulant, and also the
type of mixture and the best speed of the first pretreat-
ment reactor are investigated experimentally. Three
commercial mineral coagulants, Aluminum Sul-
fate, 342 )(SOAl , Ferric Sulfate, )( 42 SOFe  and Ferric

Chloride, 3FeCl , are used in the pretreatment process
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of concentrated brine wastewater. Moreover in soften-
ing process Sodium Carbonate and Sodium Hydrox-
ide must be added to the brine wastewater. So the ap-
propriate fraction of these additives to coagulant is con-
sidered. Experiments are held in two PVC series tanks
equipped by adjustable agitator. Optimum values of
speed, coagulant and additives are gained when total
hardness of produced wastewater reaches to minimum
amount. Figure 1 shows this setup.

Practical desalination unit of mobin petrochemi-
cal complex

Mobin petrochemical complex is located in south
of Iran and works as a utility unit for whole petrochemi-
cal companies. Five MED practical desalination units
in Mobin petrochemical complex provide the water sup-

ply. About 1030 hr
ton  flow rate of sea water is fed to

each of desalination unit although each unit has designed

for 1100 hr
ton  of sea water. About 28% of the feed is

produced as sweet water and high saline water is drained
to the sea as brine wastewater. So, the total flow rate

of brine wastewater is 3700 hr
ton , approximately. Sa-

linity of the brine wastewater is 54500ppm and the to-

Figure 1 : Basic structure of an two layer neural network
model, (IW (input weights), LW (layer weights), 10 neuron, 3
input, 1 target and two transition function)

Optimum results of experiments are used in an
ANN program and also in ANFIS program to train
and simulate networks for predicting the amounts of
total hardness, CO

2
 content and electrical conductiv-

ity.

TABLE 2 : The properties of Wastewater before treatment
process

Composition Unit Brine outlet line 

Ca++ ppm as CaCO3 14616.3 

Mg++ ppm as CaCO3 36080 

Total hardness ppm as CaCO3 50696.3 

Fe++ ppm Trace 

Ba++ ppm Trace 

SO4 -- g/l 5.25 

HCO3 - g/l 0.185 

Salinity ppm 54500 

Silica ppm 0.1 

Specific Gravity at 15 c  1.04 

pH  8.2 

Viscosity (Kinematic) Mm2/s 0.7 

TSS g/l Trace 

Total Dissolved Solids g/l 63.8 

Conductivity ms/cm 77100 

tal hardness is about 50696.3  3CaCO  as ppm . Some
of specifications of brine wastewater are in TABLE 2.

Artificial neural network

Artificial neural network (ANN) has been adopted
in many areas of science. Neural networks are adjusted,
or trained, so that a particular input leads to a specific
target output as demonstrated [36]. The term
backpropagation refers to the manner in which the gra-
dient is computed for nonlinear multilayer network as
mentioned[2,3,9] and is commonly used in many ANN
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applications as demonstrated[22,29,41].
Structure of a multi layers neural network model is

shown in Figure 2. In this work Back propagation feed
forward type is selected to be optimized. This neural
network consists of two layers (hidden and output),
neurons in hidden layer, network training functions and
layer�s learning function. Experimental input data are

normalized and then divided into training (40%), testing
(30%) and validation data (30%).

Optimization of this network includes finding ap-
propriate network training function among Levenberg-
Marquardt back propagation, trainlm, Gradient de-
scent with momentum back propagation, traingdm and
BFGS quasi-Newton back propagation, trainbfg, net-
work architecture using hyperbolic tangent sigmoid
transfer function, tansig, Log-sigmoid transfer function,
logsig and Linear transfer function, purelin, in each layer
of network and determining optimum number of neu-
rons in hidden layer using trial- and- error approach. A
number of steps are during the model development pro-
cess which is shown schematically in Figure 3.

Reasonable results are obtained when the rmse is
small and the validation and test correlation coefficient
gets close to one. Since the used transfer function in the
hidden layer is sigmoid, all samples must be normalized.
So any samples ( iX ) from the training, validation and

test sets are scaled to a new value ( newiX ) as follows:
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Where  meanX  and  meanY  are mean values of each row

of input and each row of output,  stdX  and  stdY  are stan-

dard deviation for each row of input and each row of
output, respectively.

Training aims at estimating the parameters (IWij, LW
j
,

b
j
, and b

2
) by minimizing an error function, such as the

root mean square error (RMSE) which is expressed as:
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Where data is the number of data points and targets
are experimental outputs and output shows program
results. Also correlation coefficient (R) and mean abso-

lute error (MAE) are two statistical criteria which are
employed to show the modeling performance and de-
scribed as:
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Figure 2 : Steps of the neural network model development
process

Figure 3 : Experimental apparatus
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Fuzzy interference system

Experiments show that there are various variables
affect on TH, EC and CO

2
 content and nonlinear rela-

tions between desalination effluent wastewater indices

and characteristics of pretreatment effluent stream. Fuzzy
system is a powerful tool to predict outputs in nonlinear
systems fast and precisely. Neuro-fuzzy inference sys-
tem (ANFIS) using a given input/output data set. This
function constructs a fuzzy inference system (FIS) whose
membership function (MFs) parameters are adjusted
using either a BP algorithm alone or in combination with
a least squares type of method. This adjustment allows
the fuzzy systems to learn from the data they are model-
ing. The process of fuzzy inference involves Membership

TABLE 3 : Categories of experiments are done in this study

Parameters unit Value 

Mixing rate in first pretreatment reactor rpm 50, 70, 90, 120, 140, 160, 180, 200, 220 

Coagulant (Al2(SO4)3, FeCl3, Fe2(SO4)3) cc 10, 20, 30, 40, 50, 70, 110, 150, 115, 130, 140, 100, 85, 160, 180 

NaOH/4000 cc coagulant  1.5, 3, 4 

Na2CO3/4000 cc coagulant  1,2, 3 

Run 
NaOH 

cc 
Na2CO3 

cc 
Al2(SO4)3 

Cc 
Wastewater 

pH 
Temperature 

C 
Total Alkalinity 
ppm as CaCO3 

Total Hardness 
ppm as CaCO3 

Clarified water 
PH 

CO2 
ppm as CaCO3 

EC 
µ¿/cm 

1 150 100 100 8.99 19.6 933.3333 5100 9.9 0.267265 62921.35 

2 40 30 10 8.93 19.5 1200 6573.3333 10.4 0.108664 71161.05 

3 15 20 10 8.4 19 3333.333 7140 10.65 0.16974 73408.24 

4 15 10 10 8.6 19.1 3466.667 7933.333 10.8 0.124973 75655.43 

5 150 200 100 9.14 19.5 1600 4306.667 10.4 0.778081 71910.11 

6 160 120 40 8.99 19.8 1733.333 4533.333 10.75 0.070111 68164.79 

7 60 80 40 8.99 19.6 933.333 4873.333 9.44 0.770799 73408.23 

8 60 40 40 8.93 19.8 333.333 5893.333 9.39 0.308875 73408.24 

9 225 150 150 8.84 19.9 666.6667 3740 10.1 0.120452 68164.79 

10 225 300 150 8.81 19.7 1200 1773.3333 10.55 0.076928 666666.7 

11 600 450 150 8.82 19.7 2133.33 453.33 11.44 0.00374 62921.30 

12 400 300 100 7.7 20 2933.3333 2040 11.99 0.004748 65168.54 

13 127.5 85 85 8.6 18 933.333 2720 10.4 0.084517 66666.67 

14 127.5 170 85 8.7 17.8 800 2606.667 10.4 0.072443 65917.6 

15 340 255 85 8.57 18 1066.667 2266.667 10.75 0.043145 64423.22 

16 560 420 140 8.12 19.2 2366.66 643.333 9.52 0.076231 62353.21 

17 80 60 20 8.23 19.5 1133.333 6014.6667 10.6 0.058623 70362.61 

18 200 150 50 8.88 18.9 1566.6667 3566.666 10.32 0.031562 63223.44 

19 280 210 70 8.69 19.42 1233.333 3055.3333 11 0.099532 66022.05 

20 440 330 110 9.45 18.6 2766.6667 1856 11.2 0.084123 63223.44 

21 460 345 115 9.42 19.94 2526.333 1243.6667 10.36 0.083175 63012.11 

22 520 390 130 8.54 18.68 2166.6667 755 11.33 0.063213 63112.23 

23 640 480 160 8.88 17.9 2033.333 575.2223 9.68 0.075845 60123.01 

24 720 540 180 8.65 18.5 1800 721.333 10.2 0.0469523 59754.21 

TABLE 4 : Experimental data for Al
2
 (SO

4
)

3
. (Mixing rate in coagulation step= 70 rpm; mixing rate in flocculation step=50rpm;

wastewater sample=4lit)
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Functions, Logical Operations, and If-Then Rules. A
network type structure is similar to that of a neural net-
work, which leads inputs through input membership func-
tions and associated parameters, and then through out-
put membership functions and associated parameters to
outputs, can be used to interpret the input/output map.

RESULTS AND DISCUSSION

Experimental results

Total hardness removal of effluent stream from de-
salination unit is conveyed in two pretreatment reac-
tors. Major parameters which decrease the amount of
TH, CO

2
 content and EC are mixer speed in first pre-

treatment step, type of coagulant and amount of co-
agulant. Also, experiments performed to find the opti-
mum ratio of Sodium Carbonate to coagulant and So-
dium Hydroxide to coagulant and these ratios are in-
vestigated by experiments. 405 experiments are done
for three mineral coagulants and TABLE 3 summarizes
types of experiments also TABLE 4 shows some ob-
tained data for  342 )(SOAl  just in 70 rpm mixing rate of
first pretreatment reactor. Results are visualized in Fig-
ure 4 and Figure 5.

Figure 4 visualizes that  342 )(SOAl  is the most ef-
fective coagulant comparing with  )( 42 SOFe  and  3FeCl .
Also total hardness minimizes when mixing rate in first

Figure 4 : Effluence of mixing rate of first pretreatment reac-
tor on TH for three coagulants

Data analyzing reveals that decreasing total hard-
ness, eliminating ions effectively so electrical conduc-
tivity decreases, it seems when appropriate amounts of
NaOH, Na

2
CO

3
 and coagulant are used, HCO3¯ is

consumed to form sediments so TH and CO
2
 content

decrease and consequently EC decreases.

Figure 5 : Influence of amounts of NaOH and Na
2
CO

3 
on TH

pretreatment reactor is 70 rpm. Mixing rate in the first
pretreatment reactor causes direct effect on coagula-
tion step, it must be adjusted in such value to improve
breaking connections in coagulant compound and also
improve proper ions conjunctions to perform coagula-
tion.

Using  342 )(SOAl  as coagulant, optimum values of
NaOH and Na

2
CO

3
 which are added into the solution

are considered in Figure 5.
Optimum characteristics resulted in these experi-

ments to meet minimum levels of TH, CO
2
 content and

EC are as followed.
a) Mixing rate in the first pretreatment reactor is equal

to 70 rpm, lower mixing rate doesn�t make enough

turbulences in the solution to breaks connections
while higher mixing rate than 70 rpm refuses form-
ing effective connections to coagulate so prevent
sedimentation.

b) Effective type of coagulant is Al
2
 (SO

4
)

3.

c) 150 cc of coagulant is added to 4000 cc of waste-
water.

d) Ratio of NaOH to coagulant is equal to 4 and for
Na

2
CO

3
 is equal to 3.

e) Decreasing TH leads decreasing CO
2
 content and

also decreasing EC so monitoring TH can be crite-
ria to predict EC value and CO

2 
content of effluent

wastewater. These are important to control corro-
sion damages.
So optimum data (influent values and effluent values)

are carried out to optimize the artificial neural network,
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this is explained in next section. TABLE 5 shows data
that is used to optimize the artificial neural network.

Neural network modeling results

In this case study, gained experimental data are nor-
malized and randomized and then divided into training
(40%), testing (30%) and validation data (30%). First
the effect of each input on each output is monitored by
training networks. Then 12 different types of neural
network are created and verified then the optimal per-
formance is revealed by
a) Minimum rmse.
b) Factor of correlation coefficient, R2, gets close to

one.

Sensitivity analyzing

Three layers network with 10 neurons in hidden
layer and tansig transfer function and trainlm training
function is trained to investigate sensitivity analyzing.

TABLE 6 shows the sensitivity of each output vari-
ables to inputs, each input shows the same effect and
has highest effect on TH. For CO

2
 content R2

NaOH
=

R2
Na2CO3

 (1)> R2
AL2 (SO4)3

 (0.9997) is visualized and for

gated by the same network and concluded that R2

TH
(0.9996) > R2

CO2 content
 (0.999) > R2

EC
(0.9966).

Also, effects of three influent indices on each efflu-
ent parameter are shown in TABLE 6 and again this is
shown that they predict TH, precisely. So predicting
TH values of effluent stream is dependant strongly on
three influent indices and experimental results also indi-
cate this.

Network optimization

According to the contributed algorithm the opti-
mum architecture and training function of neural net-
work is determined.
1) A multi layers feed forward back propagation net-

work with three neurons in input layer and three
neurons in output layer is used.

2) Three training functions are examined for faster op-
timization and trainlm finds better optima and de-
creases value of rmse much more rapidly with time
than traingdm and trainbfg functions. TABLE 7
shows the performance of the training functions
according to the amount of rmse.

3) Using trailm with fixed number of neurons in hid-
den layer, three possible transfer functions in hid-
den layer and output layer are analyzed in five types
of networks architectures. TABLE 8 shows that
tansig function in both hidden and output layer has
minimum rmse and maximum R2.

4) The last step in network optimization is fixing the
number of neurons in hidden layer to reach lowest
rmse and also gain proper performance without time
consumption. TABLE 9 contains results of model-
ing of 6 types of neural networks.
Figure 6 and Figure 7 show a comparison between

calculated and experimental values of the output vari-
able (TH) for test and validation sets, using the opti-
mized neural network model with number of hidden layer

TABLE 5 : Experimental data is used to optimize neural network

Parameter Unit Value 

Type of coagulant ----- Al2(SO4)3 
Amount of coagulant in each 4000 cc of wastewater 
sample 

cc 
10, 20, 30, 40, 50, 70, 110, 150, 115, 130, 140, 

100, 85, 160, 180 

Amount of NaOH in each 1000 cc of wastewater sample cc 
40, 80, 120, 160, 200  280, 440, 600, 460, 520, 

560, 400, 340, 640, 720 
Amount of NA2CO3 in each 1000 cc of wastewater 
sample 

cc 
30, 60, 90, 120, 150 210, 330, 450, 345, 390, 

420, 300, 255, 480, 540 
Mixing rate in coagulation step rpm 70 

TABLE 6 : Sensitivity analyzing

  
(1) 

NaOH 
(2) 

Na2CO3 
(3) 

Alum 1;2 1;2;3 

R2 1 1 1 0.9996 0.99988 
TH 

rmse 0.0024 0.0078 0.0053 0.0210 0.0339 

R2 0.9998 0.9998 0.9996 0.999 0.999 
EC 

rmse 0.0132 0.0170 0.0190 0.0456 0.0298 

R2 1 1 0.9994 0.9966 0.9968 
CO2 

rmse 0.0021 0.0046 0.0229 0.0567 0.00587 

EC, R2
NaOH

= R2
Na2CO3 

(0.9998) > R2
AL2 (SO4)3 

(0.9996)
is obtained. Higher amount of R2 indicate higher sensi-
tivity.

The effect of additives on each output also investi-



Optimization of desalination wastewater treatment unit performance190

Full  Paper
CTAIJ, 9(5) 2014

An Indian Journal
chemical technologychemical technology

Neuron in hidden 
layer 

Network training 
function 

Hidden transfer 
function 

Output transfer 
function RMSE R2 

10 traingdm Tansig tansig 81054.8 
  0.93211 

10 Trainbfg Tansig tansig 141025.2 
  0.88614 

10 Trainlm Tansig tansig 111023.9 
  0.99791 

TABLE 7 : Performance of network training functions

Neuron in hidden 
layer 

Network training 
function 

Hidden transfer 
function 

Output transfer 
function 

RMSE R2 

10 trainlm Tansig tansig 111023.9 
  0.99791 

10 trainlm Logsig logsig 0.1220798 0.91262 

10 trainlm Tansig logsig 0.1320765 0.87387 

10 trainlm Tansig purelin 71015.5 
  0.97362 

10 trainlm Logsig purelin 81021.3 
  0.99002 

TABLE 8 : Architecture of neural network

TABLE 9 : Optimization of number of neurons in hidden layer

Neuron in hidden 
layer 

Network training 
function 

Hidden transfer 
function 

Output transfer 
function RMSE R2 

8 trainlm Tansig tansig 8101   0.99510 

10 trainlm Tansig tansig 111023.9 
  0.99791 

12 trainlm Tansig tansig 111031.1 
  0.95988 

15 trainlm Tansig tansig 101046.2 
  0.99641 

18 trainlm Tansig tansig 610602.3 
  0.99456 

20 trainlm Tansig tansig 71010.1   0.99320 

Figure 6 : Comparison of the experimental test data with those
predicted via neural network modeling

Figure 7 : Comparison of the experimental validation data
with those predicted via neural network modeling

equal to ten, respectively. Obviously, calculated data
tracks experimental ones very well and correlation co-
efficient, R2, is close enough to one. Figure 8 shows
CO

2
 experimental values and the precise prediction of

optimized network for CO
2
 content. Also, Figure 9 and

Figure 10 compare experimental and predicted values
of EC and TH, respectively.

The suitable architecture for prediction of effluent
performance is determined to consist of a hidden layer
with 10 neurons with tansig transfer function. Also
trainlm shows the best performance in this investiga-
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Figure 10 : Predicted CO
2 
content vs. experimental

Figure 9 : Predicted EC data versus experimental

Figure 8 : Predicted TH data versus experimental

IW 

Variable Neuron 

NaOH Na2(CO3) Al2(SO4)3 
Bias 

Neuron LW 

1 -1.3345 2.6985 -0.4639 2.9339 1 -1.2281 

2 -0.1190 3.2331 -0.6928 1.5836 2 -1.8267 

3 -1.3486 0.5628 0.4592 4.0818 3 6.2114 

4 1.3974 1.3603 2.2730 5.1039 4 -2.8053 

5 -0.8324 1.9868 -2.1414 -1.2313 5 0.2601 

6 -0.8403 -1.8547 -3.7155 2.6674 6 1.0171 

7 0.7875 -0.6412 -3.3781 2.6697 7 -0.8059 

8 -0.7134 -2.5426 -2.0331 -2.8525 8 -0.8042 

9 -0.6422 -1.7614 2.3629 -2.2570 9 0.0424 

10 0.1735 -1.4767 2.6963 2.8603 10 -0.8283 

     bias -0.9125 

TABLE 10 : Matrices of weights, IW: weights between input and hidden layers; LW: weights between hidden and output
layers

tion when initial data divided into 40% (training), 30%
(testing) and 30% (validating). TABLE 10 reports
Weight and Bias values which are obtained with the
optimized neural network.

Fuzzy interference results

TABLE 11 shows types of ANFIS models which
are examined to predict treatment unit effluent qualities.
Number of layers and MFs and rules are determined
for optimal model.

Statistics criteria which are used to show the model

Figure 11 : Comparison between TH prediction data by ANFIS1
and experimental data

Figure 12 : Comparison between predicted CO
2
 content by

ANFIS1 and experimental data
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performance are reported in TABLE 12. Comparison
between criteria for ANFIS 3 and ANFIS 5 also be-
tween NAFIS 2 and ANFIS 6 concludes increasing
numbers of hidden layers increases the accuracy of
ANFIS prediction so amounts of mae and rmse be-
tween experimental data and model results gets lowest.
Also Bell membership function acts better than Gaussian
and increases amount of correlation coefficient. Com-
paring obtained results between ANFIS1 and ANFIS2
shows increasing membership rules doesn�t show posi-

Item 1 2 3 4 5 6 

Basic structure       

No. of total layers 5 5 5 5 3 3 

No. of input and output layers 3 3 3 3 2 2 

No. of nodes in hidden layers 6 6 6 6 6 6 

No. of nodes in input layer 4 4 4 4 4 4 

No. of neurons in output layer 3 3 3 3 3 3 

MFs Bell Bell Gaussian Gaussian Gaussian Bell 

No. of MFs 2 4 2 4 2 4 

No. of fuzzy rules 22 42 22 42 22 42 

TABLE 11 : Architecture of ANFIS models

TABLE 12: Statistical indices for ANFIS models

Effluent indices Statistical criteria 1 2 3 4 5 6 

R 0.9669 0.9593 0.9664 0.9447 0.9072 0.9195 

MAE 0.0473 0.0572 0.0583 0.0599 0.0726 0.0626 TH 

RMSE 0.0332 0.0358 0.0372 0.0396 0.0446 0.0416 

R 0.9860 0.9800 0.9771 0.9773 0.8695 0.8999 

MAE 0.01321 0.0142 0.0181 0.0210 0.1103 0.1030 CO2 

RMSE 0.2216 0.2235 0.2241 0.2258 0.2363 0.2213 

R 0.7969 0.7424 0.7152 0.7011 0.5869 0.6690 

MAE 0.0412 0.0441 0.0487 0.0511 0.1320 0.1011 EC 

RMSE 0.0946 0.0944 0.0924 0.0954 0.1912 0.1506 

Figure 13 : Comparison between predicted EC by ANFIS1
and experimental data

tive effect in predicting precisely. Finally ANFIS1 is
selected as an optimal model to predict treatment per-
formance.

Figure 11 shows ANFIS1 results versus experi-
mental amounts of TH and indicates the excellent agree-
ment, Figure 12 shows comparison between ANFIS1
predicted values of CO

2
 content and experimental data

and they show somehow a good agreement. Good
agreement is obtained between experimental amounts
of EC and predicted ones shown in Figure 13.

CONCLUSIONS

The influence of the main parameters of the pre-
treatment process on the final values of total hardness
is evaluated experimentally. On the other hand, the pre-
dictions of the main system outputs of a treated waste
as a function of initial characteristics (optimized amount
of NaOH to coagulant, Na

2
CO

3
 to coagulant and Al

2

(SO
4
)

3
), are performed using neural networks. Accord-

ing to this investigation bellow results are obtained:
1) The best of coagulant is Al

2
(SO

4
)

3 
and the best mix-
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ing rate in first pretreatment reactor is 70 rpm, lower
speed can�t break coagulant connections properly

and higher speed can�t make effective collision to

form sediments and remove total hardness.
2) This is beneficial to use amounts of additives con-

sidering the amount of coagulant so the optimum
value for NaOH to coagulant and Na

2
CO

3
 to co-

agulant is 4 and 3, respectively.
3) In optimum operating conditions, total hardness

decreases to 453.33 ppm as CaCO
3
, Also electri-

cal conductivity and CO
2
 content reaches minimum

levels and 62921.3 and 0.00374, respectively.
4) The optimized Multilayer neural network consists

of tangent sigmoid transfer function in hidden layer,
and also in output layer. The number of optimized
neurons is 10 in the hidden layer and Levenberg-
Marquardt algorithm as network training function.
Obtained mean squared error is  61061.9   and
correlation coefficient is 0.99791 so this neural net-
work modeling could give excellent agreement with
experimental results.

5) The optimized Multilayer ANFIS consists of five
layers with six neurons in two hidden layers, two
Bell type membership functions with four rules.

6) Optimized ANN predictions are more precise than
optimized ANFIS results. ANN shows lower rmse
with experimental data.

7) The optimized neural network can be used to pre-
dict the efficiency of pretreatment process of de-
salination effluent, generally.

8) Predictions of optimized neural network can be
applied for optimization purposes for pretreatment
units and also for forecasting performance of zero
discharge desalination plants.

9) Results are applicable for control engineers, corro-
sion engineers and process engineers, chemical and
environmental engineers.
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