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ABSTRACT 

Efficient methods and algorithms have been developed for the optimization of catalytic processes. 
In mathematical terms, these problems reduce to finding the extremum of a functional of a large number of 
variables whose domain of variation is subject to various constraints as sets of partial differential 
equations and algebraic inequalities. This implies solving problems in which the domain of extremals is 
closed. Applying Pontryagin’s maximum principle to catalytic processes described by sets of differential 
equations with constrained phase and control variables allows the necessary set of optimal conditions to be 
found. A numerical algorithm has been developed for solving nonlinear boundary-value problems that 
arise when the maximum principle is employed. The efficiency of this algorithm is demonstrated by the 
example of the catalytic oligomerization of α-methylstyrene, a typical process requiring various kinds of 
optimization problems to be solved. The theoretical optimization of the process has served as the basis for 
the engineering optimization of an industrial reactor.  
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INTRODUCTION 

The theoretical step of optimization will be considered for a kinetic model of α-
methylstyrene oligomerization in the presence of a zeolite catalyst1. The products of this 
reaction (linear and cyclic dimers) have found application as plasticizers, polymer modifiers, 
rubber, reagents in the manufacture of synthetic oils, etc. Here, we introduce the following 
designations: x1-α-methylstyrene; x2-4-methyl-2,4-diphenylpentene-1 (α-dimer); x3-4-
methyl-2, 4-diphenylpentene-2 (β-dimer); x4-1,1,3-trimethyl-3-phenylindan (cyclic dimer) 
and x5-trimers. According to the law of mass action, the rate equations corresponding to the 
reaction network in α-methylstyrene oligomerization are written as – 
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Here, wj is the rate of the j-th step (m3 (kg Cat)–1 h–1), j = 1–9; xi is the mole fraction 
of the i-th component, i = 1–5; ks is the rate constant of the s-th reaction (m3 (kg Cat)–1 h–1),  

s = 1–12, which depends on temperature T according to the Arrhenius equation RT
sE

ss ekTk
−

= 0)( , 
in which k0

s is the preexponential factor and Es is the activation energy of the s-th reaction 
(cal/mol); and R is the universal gas constant (cal mol–1 K–1). When developing a 
mathematical model for a process, the variation of the number of moles N (reaction volume) 
during the reaction is taken into account. The material balance equations for α-methylstyrene 
oligomerization in the presence of zeolite are written as – 
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where GCat is the catalyst weight, Vr is the reactor volume, and vij are stoichiometric 
coefficients. The initial (t = 0) conditions appear as .1,0 == Nxx ii  

The theoretical optimization of this catalytic process is viewed as the problem of 
finding the optimal reactor regime u minimizing (maximizing) the optimality criterion 
defined by the functional 
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Here, )u ,x(ψ0  is the prescribed function of x  (process state variables as functions 
of the independent variable t) and u (controls).  Depending on the problem to be solved, the 
optimality criterion may take various forms, including the following: mintt (0)(k) →− (for 
the operation speed problem);  max)(tx)(tx)(tx (k)
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kjj max)(τxc , where jc is the estimated cost of the j-th reaction product (for 

the economic optimality problem). In the general case, it is possible that the initial (t(0)) and 
final (t(k)) values of t are not specified in the initial formulation of the optimization problem 
and their determination should be included in the solution procedure. The initial and final 
states of the process may be defined by an incomplete set of xi(t(0)) and xi(t(k)) values, or the 
final values of xi may be subject to the constraint 
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where dj are positive or negative constant coefficients (some of them may be zero), τr 
stands for the reactor dimensions, and d0 is the overall composition of the reaction mixture at 
the reactor outlet. This type of problem may arise when it is necessary to optimize a process 
at a fixed product yield or at a preset conversion of the starting reactant. The region of 
admissible controls may be defined as an aggregate of equalities or inequalities. 

Let us consider the problem of optimizing the temperature regime T(t) for α-
methylstyrene oligomerization in order to maximize the product yield. Let the following 
constraint be imposed on the optimal temperature: 21 TTT ≤≤ . No initial assumptions are 
made as to reactor dimensions, and the specific features differentiating the cases of specified 
and unknown τr values will be discussed while presenting the solution. 

EXPERIMENTAL 

This problem will be solved using Pontryagin’s maximum principle2. An advantage 
of this mathematical tool is that it allows solutions in the form of dis continuous functions. 
The set of constraints involved in the maximum principle is always closed; that is, the 
number of equations is always equal to the number of variables. It is clear from physical 
considerations that an optimal regime does exist; therefore, the single equation derived from 
the constraints of the maximum principle will be optimum. According to the maximum 
principle, the optimum temperature in each cross section of the reactor is derived from the 
maximum condition for the function  
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where Nx =6 .Here, the λi(t) functions satisfy the following set of conjugate 

equations: 1..6.i,
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the transversality condition for the λi(t) functions: 
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The algorithm for solving the problem is as follows. In the first step, all unknown 
functions are assigned some values. The missing values of variables are set in a somewhat 
random manner and are then refined based on the specified values of the xi(t) and λi(t) 
functions at the end of the trajectory. In the second step, it is possible to determine the 
optimal control corresponding to the initial value of the independent variable t:  
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If there are no constraints imposed on the control variable, the determination of 
optimal control can be carried out by any unconstrained minimization method. Once the 
optimal control at the initial time point )( )0(

опт tT , is determined, it is possible to make a step 
forward by setting t = t(0)  + ∆t and, using any numerical method for the integration of sets of 
differential equations, determining xi(t) and λi(t). During numerical integration, it is 
necessary to see, how close the resulting trajectory is to the specified final point ? If              
the final point of intergration is preset, this can be done using the relationship 
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value of r shows, how good the initial approximations λi(t(0)) are ? The quantity r is viewed 
as a function of λi(t(0)) (i = 1, ..., 6). It should be minimized by choosing an appropriate set of 
λi(t(0)). In other words, it is necessary to solve the minimization problem 0))((min )0(
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RESULTS AND DISCUSSION 

Based on available experimental data, the mathematical description of               
α-methylstyrene oligomerization, and the above algorithm, we developed software for 
solving the theoretical optimization problem in terms of criterion 3 with the initial data 
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temperature. The zeolite content was 10%, and the duration of the reaction was 2 hr. 
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Consider the resulting time dependences of the optimal temperature and product 
concentrations corresponding to the optimal temperature regime. The optimal temperature is 
a sectionally continuous function consisting of three sections: in the first, the temperature 
grows from 86°C to the maximum; in the second and third, the temperature is constant and 
has the maximum and minimum values, respectively. For this temperature regime, the 
criterion chosen takes its maximum value and the dimer concentrations vary with time. The 
α isomer forms first. Its concentration reaches a maximum in a rather short time depending 
on the reaction temperature and then gradually decreases. The concentration of the β isomer 
increases much more slowly and reaches its maximum at the point at which the optimal 
control switches from one isothermal section to the other. 

Thus, we have demonstrated the way of optimizing catalytic processes in terms of 
the generalized Pontryagin’s maximum principle. A numerical algorithm has been developed 
for solving nonlinear boundary-value problems that arise when Pontryagin’s principle is 
employed. The efficiency of this algorithm is demonstrated by the example of the catalytic 
oligomerization of α-methylstyrene, a typical process involving various kinds of 
optimization problems. The theoretical optimization of the process has served as the basis 
for the engineering optimization of an industrial reactor. Optimal controls were determined 
in both the theoretical and engineering optimization steps. 
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