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In this paper, we consider dispersed nanogolds, and the aim is a quantita-
tive study of the associated optical absorption and scattering cross-sec-
tions, as a function of their shape and aspect ratio. The finite element
method, known to be a very useful and versatile computational tool for
particles with any arbitrary shape and embedded in a dielectric matrix, is
used. Our study is focused on the ellipsoid and cylinder shapes. The ob-
tained numerical results are naturally compared to those predicted by theo-
retical models. Also, we discuss the effects of the shell on the cylinder
plasmonic behaviors. The main conclusion is that, the shape is another
pertinent parameter that drastically affects the optical properties of the
dispersed nanogolds.  2010 Trade Science Inc. - INDIA

INTRODUCTION

Gold nanoellipsoids and nanorods exhibit transverse
and longitudinal surface plasmon resonance (LSP) in
infrared band. At normal incidence or with s-polarized
light, where the incident electric field vibrates perpen-
dicularly to the ellipsoid long-axis, the spectra reveal
one single peak at around 520nm wavelength. This reso-
nance is associated with transverse (T) plasmonic exci-
tation in the direction normal to the ellipsoid long-
axes[1,2]. At oblique incidence and with p-polarized light,
where the incident electric field has a component both
along and perpendicular to the ellipsoid long-axes, the
spectra present two peaks : the above-mentioned T
mode as well as a longer-wavelength resonance, the L
mode associated with a plasmonic excitation polarized

along the ellipsoid long-axes, and this latter mode oc-
curs at around 700nm. The L-mode resonance wave-
length is strongly dependent on both ellipsoid aspect
ratio and the distance between the inclusions in the host
matrix. In accordance with the dipolar plasmonic re-
sponse of ellipsoid, an increase in the aspect ratio causes
two resonances to split further apart spectrally, with the
T mode undergoing a blue-shift, while the L mode moves
towards longer wavelengths[3].

These nanoparticles are unique, because of its in-
triguing optical properties that can be exploited for both
imaging and therapeutic applications. Also, the reso-
nance light-scattering is of growing interest for particles
characterization and biomedical applications. This
makes that the gold nanoparticles constitute a very at-
tractive platform for cancer diagnosis and therapy. In
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the vicinity of the desired site, the gold nanoparticles
are activated through the absorption of radiation of an
appropriate wavelength. This strongly absorbed radia-
tion is converted than efficiently into heat on a picosec-
ond time domain, by electron-phonon and phonon-
phonon processes[4-7].

On the other hand, these nanoparticles are of great
interest owing to their unique optical properties, includ-
ing additional localized surface plasmon resonance ex-
tinction band which is red shifted, with respect to the
short wave-length peaks of spherical particles. Further-
more, they exhibit inherent plasmonic resonance similar
to those artificial materials at microwaves. Such extraor-
dinary characteristics enable us to obtain negative per-
mittivity from material as gold. It is so great interesting
to know their optical properties.

Mixing rules, for discrete scatters immersed in a
host medium, functions of physical properties of the ma-
terial, volume fraction and spatial arrangement of inclu-
sions, have been recently proposed. It is very common
to use the effective medium theory to characterize this
kind of media. This representation is often based on the
assumption that the inclusions in the medium have sizes
and periodicities that are sufficiently small in compari-
son to the wavelength of the impinging radiation. Under
this condition, the composite can be considered as a
homogeneous material. The most popular models are
the effective medium theory (EMT), the Maxwell Garnett
theory (MGT)[8] and the Bruggeman theory (BT)[9].
Except at low filling factors (less than 0.1), the two ef-
fective medium theories predict strongly different ab-
sorption spectra. The MGT is likely to yield better re-
sults for metallic inclusions embedded in a dielectric
matrix, when there is a sharp interface between the two
materials. The BT blurs the sharp interface, and this will
broaden the surface plasmon resonance, probably too
much at small fractions. In addition, this theory pre-
sents the advantage of applicability for arbitrary filling
factor, and correctly predicts a percolation threshold to
metallic conduction[10]. It may well yield better results
for nanocomposites of less regularly shaped particles
or aggregates. However, a classical effective medium
analysis neglects the correlations between inclusions that
become significant as their concentration increases.
These theories often claimed that a weak particle inter-
action is a condition for the validity of EMT and all the

inclusions are assumed to be spherical.
The optical response of metal nanoparticles to an

electromagnetic field of light, for a homogeneous iso-
tropic sphere, was first analytically described by Mie[11].
On the other hand, for non-spherical particles, approxi-
mate numerical methods are generally required, and in
recent decades, there are several computational ap-
proaches that have been developed, which are based
on more advanced scattering theories. These include
the T-matrix method[12], the discrete dipole approxi-
mation[13], and the finite different time domain method[14].

In this paper, we introduce the Finite Element
Method (FEM)[15,16], which is designed to solve the
relevant field equation in the computational domain,
subject to the boundary constraints imposed by the
geometry. Without making a priori assumption about
which field interaction are most significant, numerical
techniques analyze the entire geometry provided as in-
put. The FEM, which is a powerful numerical modeling
technique, has been widely used for modeling electro-
magnetic wave interaction with complex materials.

The FEM can provide a full range of plasmon-re-
lated properties, including extinction, scattering and ab-
sorption cross-sections, and local electric fields, some
of which are difficult to measure experimentally. The
computer simulation model, based on the FEM we de-
velop, can be applied to two or three-dimensional sys-
tems, with two components or more. Within this ap-
proach, the FEM is applied, to compute the potential
distribution in the composite material and to derive the
stored electrical energy, the macroscopic polarization
and the absorption and diffusion sections.

This paper is organized as follows. In Sec. II, we
review some works dealing with the calculation of the
optical properties of anisotropic inclusion embedded in
a dielectric matrix. The dispersive function of gold is
given dielectric dispersion of gold. In numerical com-
putation, we develop the numerical evaluation, carried
out on the composite media, and present the FEM for-
mulation for the resolution of Laplace�s equation and
formulae for calculating the optical properties of ellip-
soid shape. We compare the results obtained for the
ellipsoid shape to those provided by literature. In this
section, we also present the results relative to the cylin-
der shape and the shell effect on the LSP. Finally, some
concluding remarks are drawn in the last section.
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Quasi-Static approximation

Generally, the inclusions dimensions are small com-
paratively to the incident light wave-length. The dipolar
approximation is a useful method for computing the op-
tical cross-sections, starting from the polarizability of
the metal inclusion.

The present work deals with a composite medium
formed by ellipsoidal or cylinder gold inclusions of vol-
ume density N, which are dispersed in a host dielectric
matrix. We assume that all inclusions have equal masses

and volumes. The filling factor occupied by inclusions is
denoted f.

We are interested in two particular shapes, which
are the prolate (cigar-shaped) ellipsoid with rotation
symmetry, and the cylinder with diameter 2a and height
2b. The prolate ellipsoid is generated by rotating an
ellipse around its major axis, which has semi-major axis
b and semi-minor axis a=c. The gold ellipsoids and the
surrounding medium have dielectric functions  = 

1
+

2

and e
m
, respectively. In our study, the gold spheroids

Figure 1 : Real and imaginary parts of the complex gold di-
electric function upon energy photon, starting from DCP model
(solid line), which was chosen in our calculation. Drude model
(dashed line) and measurements () are also represented[23]

Figure 2 : Absorption cross-section versus photon energy
relative to gold prolate shape for longitudinal mode. The sym-
bols (, ,  and ) represent the numerical results for h 2,
2.5, 3, 3.5, respectively, whereas the solid line describes the
analytical ones. The curves are plotted choosing: 2a=20nm,


s
=2.25, and f=0.1

Figure 4 : The symbols ( and ), corresponding to FEM
simulation, represent the absorption and the diffusion, re-
spectively, for f=0.3, in the case of the prolate. The analytical
results given by the Gans formula correspond to the absorp-
tion (solid line) and the diffusion (dashed line). The numeri-
cal parameters are as follows: 2a=40nm, 2b=80nm and
e

m
=2.25

Figure 3 : Absorption cross-section versus photon energy
relative to gold prolate shape for longitudinal mode. The sym-
bols (, ,  and ) represent the numerical results for

 
h 2,

2.5, 3, 3.5, respectively, whereas the solid line describes the
analytical ones. In plotting the curves, the numerical param-
eters are identical to those used in figure 2
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are illuminated by polarized light of wave-length k, which
is in the direction with an included angle è makes with
z-axis or with x-axis. In the calculation, the size of gold
spheroids is much smaller than the wave-length of the
incident light. The gold spheroids are then subjected to

a uniform static electric field

E .

When the applied field is arbitrary directed, the in-
duced electric dipole moment[17] writes as follows,













zzzyyyxxxm0 uEuEuEp (1)

where 
0
 is the permittivity of the vacuum, a

x
, a

y
 and a

z

are the elements of the polarizability tensor of an indi-
vidual dipole, whereas the quantities E

x
, E

y
 and E

z
 stand

for the components of the applied field, relative to the
principal axes of an anisotropic dipole. Elsewhere, the
macroscopic polarization, induced in each metal inclu-
sion of volume V

p
, is assumed to be a linear isotropic

function and given by,

pV
p

P




 (2)

The extinction, s
ext

, the scattering, 
scat

, and the ab-
sorption, 

abs
, cross-sections for small particles, corre-

sponding to the L mode (=0), are evaluated using op-
tical theorems[18].


ext 
= k Im(

z
) (3)






6

k
2

z
4

scat (4)


ext

 = 
scat

 + 
abs

(5)

Here, 0m kk  , where k
0
 represents the wave-vec-

tor of the applied field in the vacuum.
If the incorporated inclusions are physically identi-

cal, the total extinction is directly proportional to the
inclusion volume density, according to the relation.
C

ext
 = N

ext
(6)

In what follows, we shall compute the optical cross-
sections making use of eq. (3-5). To do this, it would
be necessary to know the inclusion�s polarizability. In
facts, different approaches are proposed[19]; the
Clausius-Mossotti relation is generally used[18] for the
sphere shape. Starting from Laplace�s equation, ana-
lytical expressions were obtained in the framework of
the quasi-static approximation, for simple geometrical
shapes, such as spheres and ellipsoids. The dipolar

polarizabilities along the semi-major axis (x-axis, y-axis)
and semi-minor axis (z-axis) of the prolate spheroids
are different. When the incident light is along the z-axis,
the applied electric field is polarized in parallel to the
disk (x-y plane), the corresponding polarizabilities are
then given by[18].

2
2

2

m
i
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1

2
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i
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i
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(7)

where the geometrical factors L
i
 (i = x, y, z are the

Cartesian directions) are given by L
x
 + L

y
 + L

z
 = 1, and

L
x
 = L

y
. Here, L

z
 writes, in term of the semi-major axis,

as follows,
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22
x 1e  (9)

 = a/b (10)
where  and e

x
 represent the aspect ratio and the ec-

centricity of the ellipsoid, respectively. Combining eq.
(3) and (7) yields the Gans Formulae[18].

2
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
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
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



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(11)

This relationship describes the extinction cross-sec-
tion of the prolate inclusion, in the quasi-static limit, and
it is very easy to find the other optical cross-sections.
We also point out that the above relation is valid only
for monodisperse inclusions and weak fractions. When
the distance between particles becomes weak, how-
ever, this will have significant impact on their plasmonic
behaviors. In fact, this is caused by the electromagnetic
field coupling[20]. In these conditions, the analytical
theory should be modified for ellipsoid shape.

Dielectric dispersion of gold

Notice that the optical constants of the metal de-
pend on the photon energy (or light wave-length ).
This optical response is generally related to the dielec-
tric dispersion. We recall that the dielectric function was
first computed using the Drude model[21], because of its
simplicity. It describes the metal confinement and the
surface effects in a phenomenological damping constant.

Therefore, this theory considers only free electrons
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contribution in metals. This means that the response to
the electromagnetic field is mainly due to the transitions
of the electrons in the conduction band, i.e. intraband
transitions.

Furthermore, in order to improve this model, we
have used the so-called Drude-Lorentz with two-criti-
cal points (DCP) model[22] which reproduces the basic
optical properties of metals. The virtue of such an ex-
tended model is that, it describes correctly the gold
permittivity in a wide photonic energy band.

Figure 1 depicts the gold dispersion function upon
the photon energy (electron-Volt), described within the
DCP model and classical Drude theory. A comparison
with measured data of Johnson & Christy[23] is made.

There has been a growing interest to the descrip-
tion of metal permittivities by means of analytical mod-
els, and the DCP model gives a very good agreement
with experimental data in the large band of wavelengths.

In the following section, we shall present the basic
equations and draw the numerical approach enabling
us to comprehend the optical properties of the aniso-
tropic nanogolds clusters.

Numerical computation

The effective permittivity is determined for a matrix
dielectric with inclusions, for various shapes and vol-
ume fractions of particles. Consider a composite for
which the host material has a dielectric constant 

m
. The

displacement field is then given by,


 PE D m0
(12)

The effective permittivity of the inhomogeneous ma-

terial is then defined as


 ED eff0
(13)

Using eq. (12) and (13) yields


 PE E m0eff0
(14)

The effective permittivity needs to be calculated nu-
merically for arbitrary particles shapes. This is done start-
ing from a resolution of Laplace�s equation, using FEM
for fixed nanogolds shape. FEM allows the determina-
tion of the electric field and potential distributions know-
ing both physical properties of material and boundary
conditions.

To describe the FEM formalism, we consider a
spatial domain, , with a charge density equal to zero.
We assume that the composite is non-magnetic and the
frequency is low enough, so-that the interaction between
the magnetic and electric fields can be neglected. In this
case, the Laplace�s equation reads

0)r(V)r(. 










(15)

Here, (r) accounts for the local permittivity and
V(r) for the electrostatic potential. Taking into account
the symmetry and periodicity properties, the geometry
of the medium reduces to a unit cell. The interior vol-
ume is enclosed by four side surfaces, a top surface
and a bottom surface. It may contain arbitrary dielec-
tric matrix and metal inclusion, where L

1
, L

2
 and L

3
 are

lengths in the x, y and z-directions, respectively.
The problem consists to solve differential equation,

together with the boundary conditions

Figure 5 : Comparison between the absorption (a) and the diffusion (b) cross-sections of the gold prolate (dashed line) and the
cylinder (solid line), for b/1=3 and 3.5. The numerical parameters chosen are as follows: f=0.1 and 

m
=1.77

(a) (b)
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V(r) = V
1
 = E

0
L3(on top surface) (16)

V(r) = V
2
 =0(on bottom surface) (17)

where E
0
 is the amplitude of the applied field. The elimi-

nation of fringing effects also has to be satisfied

0Vn 


(on sides) (18)

Here, 
n  is the normal vector to the considered sur-

face.
The FEM�s implementation consists in dividing the

domain  into tetrahedral finite elements, and for each
element. The potential and its normal derivative in this
space can be approximated inside each element using
interpolating functions[15]. By solving the matrix equa-
tions resulting from the discretization procedure, we
obtained electrical field and potential distributions on
each node of the mesh.

Based on this potential distribution and its normal
derivative, we compute both electrostatic stored en-
ergy and dielectric loss on each tetrahedral element of
the computational mesh. The electrostatic energy can
be evaluated as,

k

222
'
k

k
e dv

z

V

y

V

x

V
)z,y,x(

2

1
W
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
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
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









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


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
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


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










  (19)

and energy loss as

k

222
''

k
k
d dv

z

V

y

V

x

V
)z,y,x(
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P
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
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
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










  (20)

where 
k
 and v

k
 represent the permittivity and the

volume of the kth tetrahedral element, respectively, and
ù is the frequency of the applied field. The components
of the composite are described through their complex
permittivity k = k + ik. Therefore, the total energy,
W

e
, and losses in the entire composite, Pd, can be found

summing over the total number of elements of mesh.
As already mentioned, to compute the quantities

W
e
 and Pd, we assume that the composite material is

embedded in a plane capacitor. This procedure allows
us to determine the effective permittivity in a direction
parallel to the applied electric field. Thus, from the ca-
pacitor electrostatic energy expression, we deduce the
effective complex permittivity. The real part, e

eff
, and

imaginary one, e
eff

, are given by,

  2
12

3

'
effe VV

L
S

2
1

W  (21)

  2
12

3

''
effe VV

L
S

2
1

P  (22)

Here, S=L
1
L

2
 is the surface of in-depth.

More details of FEM applications to composite sys-
tems can be found in Refs.[24-29].

The computation of the effective dielectric function
of the composite, based upon the FEM (Eq. (21) and
(22)), allows us to have access to the polarization vec-
tor using the eq. (14). The polarizability is calculated
numerically using eq. (1) and (2), and the several cross-
sections are given by eq. (3-5).

RESULTS AND DISCUSSION

We emphasize that several parameters can affect
the optical resonance. These are absorption 

abs
 and

scattering cross-section 
scat

, with respect to the pho-
ton energy, the particle volume fraction, their shape and
the shell (if it exists) surrounding them. Our aim is to
quantify the effects of the volume fraction and shell
around the inclusion.

For a comparison between numerical calculations
by FEM and Gans formula, we first consider gold sphe-
roids and excite the longitudinal plasmon resonance
(LSP). In this calculation, the minor axis of gold prolate
is kept constant and equal to 20nm, whereas, the di-
electric constant of the matrix is 2.25.

Figure 2 and 3 illustrate the variations of the ab-
sorption and scattering cross-section for prolate shape,
upon photon energy, which are calculated by FEM for
f=0.1 and several values of . In these figures, the ana-
lytical results are also represented. We observe that,
for a diameter equal to 20nm, the absorption is greater
than the scattering. In addition, these curves show that,
when f=0.1, the optical resonance is produced around
a photon energy equal to 1.9eV (=650nm) for =2.5

Figure 6 : Configuration of metallic cylinder inclusion with
shell
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and to 1.6eV (=770nm), if =3.5. We observe a sig-
nificant red shift in frequencies, with the increasing of
the aspect ratio. A good agreement between FEM cal-
culations and analytical results, corresponding to a fill-
ing factor f=0.1, is observed, especially when the anisot-
ropy is not strong.

The volume fraction can be increased with the size
of inclusions or their number density. In our case, we
chose to keep constant the dimensions (2a=40nm and
2b=80nm) of inclusion and to decrease the volume of
the matrix in the unit cell, such a way f is equal to 0.3.
The optical cross-sections are reported in figure 4.

The discrepancy, observed between numerical and
analytical results, is due to the fact that Gans formula is
valid only for weak inclusion volume fractions, i.e. for
dispersed particles. It is worthwhile to point out that
the fraction f=0.1 often corresponds to the case of iso-
lated particles without interaction. Therefore, our ap-
proach provides an appropriate tool for the description
of the optical properties of nanoparticles even if their
density is strong.

Here, we focus our attention on the comparison
between the two shapes: cylinder and spheroid. We
consider a cylinder of diameter 2a and height 2b. The
minor and the major axis of the prolate inclusion are
chosen equals to the diameter and the height of the cyl-
inder, respectively, in order to have the same aspect
ratio. We report FEM results for the absorption (Fig-

ure 5a) and scattering cross-sections (Figure 5b) of a
cylinder and a prolate inclusion, for two values of as-
pect ratios, and 2a is fixed to 40nm. For this diameter,
the scattering increases and it is slightly greater than the
absorption. When b/a=3, we observe that the cylinder
and the prolate have the same absorption and scatter-
ing sections, but there is some shift in frequency be-
tween them. An increase in the aspect ratio implies a
discrepancy in the frequencies and the amplitudes be-
tween the two considered shapes. We remark that the
frequency shift is more pronounced when the shape is
prolate.

Theses curves imply that there exist two competing
key factors, a weighting factor assigned to the shape
parameter and a dielectric function of the metal par-
ticle. This means that, for the prolate and cylinder
nanoparticles, even if they have the same aspect ratio,
their effect is certainly different depending on their ex-
act geometry. In our case, the ellipsoid geometry has
more significant positive contribution from the shape
factor for the enhancement of absorbing and scattering
efficiencies.

The FEM modeling is very versatile to study the
effect of a shell surrounding the metal inclusion, where
it represents the vacuum, a material like polymer or
silica, having a permittivity s and a depth noted e (Fig-
ure 6). In our calculations, the filling factor is relative to
the both metal inclusion and the shell and is kept con-

Figure 8 : Effect of the shell on the optical proprieties of a
gold cylinder inclusion, for L mode and several shell depths
(e=0nm, e=2nm and e=4nm), by FEM simulation. The solid
line represents the absorption, whereas the dashed one cor-
responds to the diffusion. The curves are drawn choosing:
2a=10nm, 2b=50nm, f=0.1, 

m
=1.77 and e

s
=1

Figure 7 : Effect of the shell on the optical proprieties of a
gold cylinder inclusion, for L mode and several shell depths
(e=0nm, e=2nm and e=4nm), by FEM simulation. The solid
line represents the absorption, whereas the dashed one cor-
responds to the diffusion. The curves are drawn choosing:
2a=10nm, 2b=50nm, f=0.1, 

m
=1.77 and e

s
=2.5
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stant. We also keep the dimensions of the gold cylinder
constant, but we increase the depth of the shell; this
means that the aspect ratio decreases.

We report numerical results of the optical cross-
sections in figure 7, for the situation where the permit-
tivity of the host matrix and the shell are 1.77 and 2.5,
respectively. Since the absorption is greater than the
scattering, we have multiplied the scattering cross-sec-
tion by a 3-factor. These curves show that, in despite
that the aspect ratio decreases and the metal volume is
kept constant, the LSP is shifted toward the infrared
frequencies in a manner very pronounced. When the
shell�s depth is equal to 4nm, a relative wavelength shift
of value 0.346 occurs for 

s
=2.5, and takes the value

0.166, for 
s
=1 (Figure 8). This increase in the LSP,

with decreasing shell-cylinder aspect ratio, is different
from that predicted by Gans theory and FEM calcula-
tions, which state that, for an inclusion without shell and
when its aspect ratio increases, the LSP occurs in the
infrared frequencies.

In addition, it is also noted that both absorption
and scattering cross-sections of the cylinder with a shell
are greater than those of the same cylinder without shell.
This dependence of the scattering and absorption prop-
erties of Au nanocylinder on their surrounding shell is
worth investigation, because the use of the kind of metal
inclusion for optical and biotechnological applications
often requires that they are surrounding with various
materials and biological molecules.

Concluding remarks

In this work, we have introduced a numerical mod-
eling based on the Finite Element Method, in order to
compute the optical absorption and scattering of gold
anisotropic inclusions embedded in a dielectric medium.
We have observed that the optical properties strongly
depend on the shape and the inclusion volume fraction.
A difference between spheroid and cylinder spectra is
also shown. The results associated with nanocylinders
(reported in literature), are treated as prolate spheroids
in Gans theory, without taking account for the phase
retardation and higher-order contributions. In this pa-
per, however, they are exactly treated according to their
size and shape in FEM calculations.

Our approach provides a large scope for the de-
scription of the optical properties of nanoparticles, even

if their density is strong. This numerical modeling al-
lowed us to study the effect of the shell or the vacuum
between the metal inclusion and the host matrix (this
can occur when the metal grows in the anodic alumi-
num oxide matrix).

Finally, we emphasize that the numerical method,
developed in this paper, can be extended to investigate
the electromagnetic coupling between particles and its
effect on the plasmonic behaviors.
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