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ABSTRACT

Ontology similarity calculation iswidely used in various fields such as
biology science. In this paper, we propose new algorithmsfor ontology
similarity measurement such that the new computational models consider
operational cost intherea implement. Then, weapply itinto biology science
and it is highlighted that new calculating version is designed for multi-
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dividing setting. The experiment dataon “Go” ontology demonstrate the
new algorithm have higher efficiency in biology science application.
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INTRODUCTION

Ontology abstracts certain application field of the
realworldinto aset of conceptsand relaionshipsamong
concepts. Integrating the ontol ogy into the technol ogy
of textinformationretrieva not only inherit the advan-
tagesofinformationretrieva but dso overcomethelimi-
tationsthatconceptsinformation retrieval cannot deal
with therel ationships of the concepts. Now, ontology
gmilarity computationiswidel yusedinmedica science,
biology science(sed for instance) and socia science.
Asontology used ininformation retrieval and biology
science, every vertex can be regard as a concept of
ontology,measurethes milarity of verticesusingthein-
formation ofontol ogy graph.

Let G bean ontology graph corresponding to on-
tology O, theaim of ontology similarity measureisto
findasimilarity function Sm: VxV — + {0} which

mapseach pair of verticesto area number. A hot trick
toget optima smilarity between verticesonontology is
by afunctionwhich mapsontology graphintoalineand
maps every vertex in graph into area-value. Hence,
the similarity between verticesismeasured bythe dif-
ference of their correspondingscores. Some efficient
ontology agorithmscan refer’™>%, Several theoretical
analysesfor ontology a gorithm canrefert-28,

Inthis paper, we present anew ontology algorithm
for ontol ogy similarity measuring which considersop-
erationa cost inthecomputationa mode. Specifically,
we propose severa simultaneous processesfor biol-
ogy gpplicationsfrom optimigticbiasand pessmigicbias
view. The organization of rest paper isasfollows.we
describethe s multaneous processin next section;then,
we present the new versions of simultaneous process
for ontology dgorithms; findly, experimentdataisgiven
to show that our new a gorithmshave high accuratein
biology science.



BTAIJ, 8(11) 2013

Wei Gao and Li Shi

1573

————, FyurL PAPER

SETTINGAND NOTATIONS

In this section, we present the standard simulta-
neous processtechnology which was proposed by
Tulabandhula, and Rudinin®9,

Asweknow, computer learningdgorithmsareem-
ployed to obtain predictions, and thesepredictionsare
usudly hdptomakeapolicy or plot action, wherethere
isacost toimplement such policy or action. Simulta-
neous processisatrick toalign statistical modelingwith
decision making. It provided awayto propagate the
uncertainty in predictivemodeing to theuncertainty in
operationa cost (i.e., cost by thepractitioner insolving
the problem, and isregarded asregularization termin
an objective function of computer agorithm). The
technol ogyadmitsto exploretherange of operationa
costs associated with the collection of
appropriatea gorithm model sand alow possible opti-
mistic or pessimistic costs, which depend on the equi-
librium coefficient. Any prior knowledgefor theopera:
tional cost can help to restrict the hypothesi s space of
objectivefunction and thuscontributiontothea gorithm.

Thesmultaneousprocessisaspecid classof deci-
siontheory. Thegoal of standard decisontheoryisto
yield apolicy for minimizingthe expected cost. For
propagati ng the uncertainty in modeling to the uncer-
tainty in costs, simultaneous process determinesthe
range of predictive modelsand corresponding policy
decisionsor actions. It admitsaregularization termin
agorithm mode which containsencodingthepolicy (or
action) withitsassociated cost and an adjustable equi-
librium coefficient.

Let S={ (v, y,)}, bealabeledtraining set, where

v, ¢V, y. Thegoa of ontology algorithmisto learn

anoptimal function: V(or : VxV{ 0} )fromsampleset S
Generdly, f* isobtained by minimization modd:

e=argmin(>1(f (V) - y)+ AN(1)).

feF =1

wherd : 1 x; > +,N:f—[ isregularizer, ; is

caled enilibrium coefficient. Theterm D [ (f (V) = ¥;)
i=1

isdepended on error of functionfon sampleset S and
theterm AN(f) rely onthesmoothnessof functionf.

Thetypical lossfunctionsused in such computationa

model arethesquareloss! (f (v,)—v,)=(f (v,)-V,)?,

exponentid loss | (f (v,) —y,)=d)-¥l, logigticloss
I(f(v)-y)=log(l+(f(v)-V)), hinge loss

(F(v)—y) =max{1-|f (%) - yi[ .0}

Function classF isusually theclass of all linear
functionas

Let {v}", besetof unlabeled verticesin ontology
graph. Theaim of organizationisto produceapolicy
p”which minimizes a certain operational cost
Cost(p, f*,{¥}",). If theorganizationknew the{ v}, ’s
truelabelsin advance, it would select apolicy to opti-
mizetheoperationa cost reckon ontheselabe swithout

fr.

However, theselabels are unknown. We have no
choose but to cal culate the operational costsusing the
modd’s predictions. The main difference between the
standard sequentia processand simultaneous process
iIswhether f”issaectedusing or ignoring the knowl-
edge of the operational cost.

Thedetail for sequentid processcomputing can split
following two steps (sed™?).

A 1: Deducefunction f”from sample set Susing
standard learning agorithm:

fr=argmin(Y1(f ()~ y)+ AN(F)).

i=1
A 2: Select policy p* to minimizethe operationa
codt:

p*= argpergin(Cost(p, £ {V})

The operational cost Cost(p, f*,{V},) is the
amount the organization will spendif policy pisse-
lected in responseto thevaluesof{ f (v.)}, .

The simultaneous process is obtained by
combiningA 1 andA 2together. Theoptimistic biasis
chosenif wewould liketo provelower costs, and pes-
smistic biasisselected if weprefer higher costs. The
equilibrium coefficient ; isusedto control thedegree
of optimism or pessmism. That isto say, theoptimistic
biaslowerscostsif thereisuncertainty, but the pessi-
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mistic biasrasesthem. The processesfor s multaneous

process are stated as follows (see*® for more detail).
B 1: Getamodd f " obeying oneof thefollowing:
OptimidticBias:

g=argmin(Y1(f (v) - )+ AN(f)

+CCost(p, f* {7},)). (1)
PessmigicBias,
¢=argmin(1(F (%) - y,) + AN(f)

feF i=1

~CCost(p, f*,{V},))- @
B 2: Yiddthepolicy.

o+= argmin(Cost(p, f{9})) ®)

peP

Here Cisapostive constant. Inwhat follows, we
awaysassumethat C>0isaconstant.

ASSOCIATEDWITH ONTOLOGY SETTING

Gao and Gao™® presented a ontology algorithm
based on pair computation:

f_argmln(ZI(f V.V, Y)+AN()) @

feF i=1
Here f:VxV — [ + {0} whichcdculatesthesmi-
larity of verticesdirectly and S={(v.,v,, y,)}", . By in-
tegrating (4) into standard simultaneous process (1-3),
we get thefirst ontol ogy algorithm stated bel ow:

Algorithm 1: Ontol ogy a gorithmwith operationa
cost based on pair calculating.

Step 1: Getamodel " obeying oneof thefollow-
ingy

OptimidticBias
f—argmm(ZI(f VIV, ¥,)+AN(T)

feF i=1

+CCost(p, f".{V},))- ©)
PessmigticBias:

froargmin(1(f vV, y)+ AN(T)

feF i=1

~CCost(p, f".{7},))- (©)

BioTechnology —

Step 2: Yiddthepoalicy.
p*= ar%ergln(Cost(pf {v})) ™

Agarwal and Niyogi [20] presented an ontology
agorithm based onranking learning method:

i=l j=i+l

argmn( Zzl(f MY (v, Y)))
f'=
Y
+AN(f)). (8)
By integrating (8) into standard s multaneous pro-
cess(1-3), weget the second ontol ogy algorithm stated
below:
Algorithm 2: Ontol ogy a gorithmwith operationa
cost based on pair calculating.
Step1: Getamodd f " obeying oneof thefollowing:
OptimigticBias

i=1l j=i+1

agmin(-— Zzl(f ¥ (v, )
f*: feF
o
+AN(f)+CCost(p, " {V},)). 9)
PessmidicBias

feF i=1 j

argmin( = ”Zil(f V). (v,.y,))
=)
2

+AN(f)—CCost(p, f*.{V},)). (10)
Step 2: Yiddthepoalicy.
or= Agmin(Cost(p, ' .{9},)) (1)

peP
Viathes multaneous processfor ontol ogy setting,
weget thefunctionf on V<V or Vusing dgorithm (5-7)
or (9-11). For (9-11), the ontology graph ismapped
into alinecongisting of real numbers. Thesimilarity be-
tween two concepts can be measured bycomparing the
difference between their correspondingreal numbers.
For eachve V(G), f (v) isatarget valuefor vertex v

usingregular graph.
EXPERIMENT

Weuse“Go” ontology O, which was constructed
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inf?(Figure 1 shows the basic structure of O, ) for our
experiment. P@ N (Precision Ratiosee??) isused to
measure the equality of the experiment. Wefirst give
the closestN conceptsfor every vertex on the ontology
graph by expert, and then we obtain thefirst N con-
ceptsfor every vertex on ontol ogy graph by thealgo-
rithm and computethe precisonrétio.

_,"'f--. —-.,l_-\-‘\"-.
.»""." -------"'
- —
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f’x Y
> -

L 4 I

7N\

Noticethat thereare “Molecular function”, “Bio-
logical process” and “Cellular component” three
branchesin GO ontology. Hence, the new version of
smultaneous processis presented for thisapplication.
Thefirst author of thispaper raisesthe multi-dividing
ontology a gorithm asbel ow (sed™ for more detail).
Thereisaninstance spaceV fromwhich verticesare
drawn, and the learner is given a training sample

(S:S,..,S)eVrhx V..
trainingsample S,=(\/,...,V; ) (1<ak). Thegod isto
learn from these sampl esared -valued ontol ogy score
functionf:V—(; that ordersthefuture S, verticesrank

Figurel: “Go” ontology

.consisting of a sequence of

higher than S, wherea<b. Weassumethat instancesin

each S, aredrawn randomly and independently ac-
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cording to some (unknown) distribution D, onthein-

stance space V respectively. Formally, theempirical
mode of multi-dividing ontology algorithm can be ex-
pressed asfollows:

f_argmln(zz > Ly,

a=1b=a+li: €S, jiv;eS,

+AN(T)). (12

Intermsof (12), we get the new simultaneous pro-
cessagorithm asfollows. Dueto thestructure of “GO”
ontology graph, thisversonissuitablefor “GO” ontol-
ogy application.

Algorithm 3: Ontol ogy a gorithmwith operational
cogt formulti-dividing setting.

Step 1: Getamodel {” obeying oneof thefollow-
ingy

OptimigticBias

1;_argmln(zz DD Iy,

a=1b=a+li;eS, jiv;eS

+AN(f)+CCost(p, " {9})). (13)
PessmidicBias
¢ _argmln(z Z > Ly,
a=1 b=a+liveS, jivje§
+AN(f)—CCost(p, " {9},)). (14)

Step 2: Yiddthepoalicy.
argmin(Cost(p, f*{V},))
peP

In the experiment, let F be areproducing kernel
Hilbert space (RKHS) of real-valued functions on
Vassociated withaMercer kernd K: V<V —(; , andN:
F{ 0} betheregularizer defined byN(f)=, where de-
notestheRKHSnorminF.

At the same time, we employontology
technologiesin®Mto the “GO” ontology. Calculate the

p*= (15)

TABLE 1: Theexperiment resultsof ontology similarity measure

P@.3 average P@5 averageprecisionratio  P@210 average precision ratio P@Z.O. average

precision ratio precision ratio
Algorithm3 56.44% 65.73% 78.39% 89.72%
Algorithmin [5] 43.56% 49.38% 56.47% 71.94%
Algorithmin [6] 42.13% 51.83% 60.19% 72.39%
Algorithmin [7] 46.38% 53.48% 62.34% 74.59%
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accuracy by these three algorithms and comparethe
result to agorithm 3 using optimistic bias(13), part of
the datarefer to Table 1.From the experiment result
display inTABLE 1, wearrived at the conclusion that
our dgorithmismoreefficiently thanagorithmsraised
in7, especialy when Nislager enough. Therefore,
the new ontol ogyal gorithm3for multi-dividing setting
with operational cost hashigh efficiency.

CONCLUSION

Asadatarepresentation model, ontology hasbeen
widely used in biology science, and proved to havea
high efficiency. Inthis paper, we apply thetrick of si-
multaneous processto design the new ontology simi-
larity computing model and useitin Go ontology. The
new a gorithm hashigh quality according to the experi-
ment dataabove. Moreimportantly, theagorithmre-
ducestheoperationa costinimplement.
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