
[Type text] [Type text] [Type text]

2014

© Trade Science Inc.

ISSN : 0974 - 7435 Volume 10 Issue 24

BioTechnology

An Indian Journal
FULL PAPER

BTAIJ, 10(24), 2014 [14968-14980]

Multi-strategy multi-agent simulated annealing
algorithm based on particle swarm optimization

algorithm

Changying Wang*, Ming Lin, Yiwen Zhong
College of Computer and Information Science, Fujian Agriculture and Forestry

University, Fuzhou, 350002, (CHINA)
E-mail : cptone@163.com

ABSTRACT

Multi-agent simulated annealing (MSA) algorithm based on particle swarm optimization
(PSO) is a population-based SA algorithm, which uses the velocity and position update
equations of PSO algorithm for candidate solution generation. MSA algorithm can
achieve significantly better intensification ability by taking advantage of the learning
ability from PSO algorithm; meanwhile Metropolis acceptance criterion is efficient to
keep MSA from local minima. Taking into account that different problems may require
different parameters for MSA to achieve good performance, this paper proposes a multi-
strategy MSA (MMSA) algorithm. In MMSA algorithm, three parameter control
strategies, multiple perturbation equations, variant number of perturbed dimensions and
declining population size, are used to enhance the performance of MSA algorithm.
Simulation experiments were carried on 10 benchmark functions, and the results show
that MMSA algorithm has good performance in terms of solution accuracy.

KEYWORDS

Multi-agent simulated annealing; Particle swarm optimization; Metropolis acceptance
criterion.

BTAIJ, 10(24) 2014 Changying Wang et al. 14969

INTRODUCTION

 Simulated annealing (SA) algorithm, which was first independently presented for combinatorial optimization
problems [1, 2], is a popular iterative meta-heuristic algorithm widely used to address discrete and continuous optimization
problems. The key feature of SA algorithm lies in a means to escape from local optima by allowing hill-climbing moves to
find a global optimum. The major shortage of SA is that it can be extremely slow and require significantly more processing
time than other meta-heuristics. This is mainly because SA does not learn from its searching history intelligently when
sampling to generate candidate solutions. Several attempts have been made to improve SA’s performance either by reducing
the annealing length or changing the generation and the acceptance mechanisms. However, these improved schemes, while
run faster, do not generally inherit SA’s capability of escaping from local minima [3]. Adding parallelism is another efficient
way to reduce the processing time [4]. However, the implementation and efficiency of parallel SA algorithms are often
problem-dependent. On the contrary, population-based meta-heuristics, such as genetic algorithm [5], differential evolution
(DE) algorithm [6, 7], particle swarm optimization (PSO) algorithm [8-10], firefly algorithm [11] and cuckoo search [12, 13]
etc., are equipped with intelligent learning mechanisms to guide their searching, so they can balance intensification and
diversification more easily.
 Inspired by the cooperative behaviours among individuals of population-based meta-heuristics, multi-agent SA
(MSA) algorithm based on PSO algorithm [14] and MSA algorithm based on DE algorithm [15] are learning based MSA
algorithms. MSA algorithms take advantage of both the learning ability from population-based meta-heuristics and the hill-
climbing ability from SA. A population of agents runs SA algorithm collaboratively, and use the velocity and position update
equations from PSO or mutation operator formulas from DE to generate candidate solutions. Those sampling schemes
leverage the learning ability from PSO or DE algorithm; it can adjust the neighbourhood structure adaptively and exploit the
promising search space more finely in the later stage, thus it can improve the convergence speed of MSA algorithms
effectively. MSAs have been successfully applied for continuous space optimization problems, such as function optimization
problems and protein structure prediction problem on AB model [16].
 In this work we are motivated by the factor that different problems may require different parameters for MSA to
achieve good performance. For example, for multi-dimensional problems, MSA perturbs one dimension only to produce a
candidate solution. But for some problems, MSA may have better performance when perturbing all dimensions to produce a
candidate solution. Aims to tackle those shortcomings, this paper propose a multi-strategy MSA (MMSA) algorithm. In
MMSA algorithm, three parameter control strategies, multiple perturbation equations, variant number of perturbed
dimensions and declining population size, are used to enhance the performance of MSA algorithm.
 The remainder of this paper is organized as follows: Section 2 provides a short description of PSO algorithm and
MSA algorithm. Section 3 presents our MMSA algorithm. Section 4 gives the experimental approach and results of
experiments carried on 10 benchmark functions. Finally, section 5 summaries the study and possible future works.

PRELIMINARIES

Particle Swarm Optimization Algorithm
 PSO algorithm is a stochastic population based optimization algorithm, first published by Kennedy and Eberhart in
1995. There are two variants of the PSO algorithm. One has a global neighborhood, and the other has a local neighborhood.
In the global variant, each particle moves towards its best previous position and towards the best particle in the whole swarm.
On the other hand, in the local variant, each particle moves towards its best previous position and towards the best particle in
its specified neighborhood. Suppose that the search space is N-dimensional, then the i-th particle of the swarm can be
represented by a N-dimensional vector, Xi = (xi1, xi2, ..., xiN). The velocity of this particle, which represents the position
change of this particle, can be represented by another N-dimensional vector Vi = (vi1, vi2, ..., viN). The best previously visited
position of the i-th particle is denoted as Pi = (pi1, pi2, …, piN). For the global variant, the best previously visited position of
the swarm is Gi = (gi1, gi2, ..., giN), and let the superscripts denote the iteration number, then each particle is manipulated
according to the following two equations [17]:

)()(2211
1 t

ij
t
j

t
ij

t
ij

t
ij

t
ij xgrcxprcwvv −+−+=+ (1)

11 ++ += t
ij

t
ij

t
ij vxx (2)

where j =1, 2, ..., N; i =1, 2, ..., M, and M is the size of the swarm; w is called inertia weight, which is used to control the
impact of the previous history of velocities on the current velocity, thus to influence the trade-off between global and local
exploration abilities of the particle [17]; c1, c2 are two positive constants, called cognitive and social parameter respectively;
r1, r2 are random numbers, uniformly distributed in [0, 1]; and t =1, 2, ..., determines the iteration number. Eq. (1) is used to
calculate the particle’s new velocity according to its previous velocity and the distances of its current position from its own
best previously visited position and the global best experience. Then the particle flies toward a new position according to Eq.
(2).

14970 Multi-strategy multi-agent simulated annealing algorithm based on particle swarm optimization algorithm BTAIJ, 10(24) 2014

 Since its first publication, a large body of research has been done to study the applications of PSO, and to improve
its performance. To improve PSO’s performance, many studies concentrated on a better understanding of the PSO control
parameters, such as w, c1 and c2. Those parameters control particle’s learning from its previous velocity, its history best
position and the best position of its neighbours. Using Eq. (1) as an example, w controls the learning from its previous
velocity, c1 controls the learning from itself and c2 controls the learning from its neighbours. Different problems may require
different velocity equation to achieve good performance for PSO algorithm, in section 3.1, we will compare two different
velocity equation, one is the classical PSO with constriction factor (CPSO) [18], and the other is a newly proposed Median-
oriented PSO (MPSO) [19].

 Clerc [18] indicates that the use of a constriction factor may be necessary to insure convergence of the PSO
algorithm. As a result of the constriction factor, the velocity equation is changed to Eq. (3), where constriction factor k is a
function of c1 and c2 as reflected in Eq. (4).

))()((2211
1 t

ij
t
j

t
ij

t
ij

t
ij

t
ij xgrcxprcvkv −+−+=+ (3)

4,,422 21
2 >+=−−−= ϕϕϕϕϕ ccwherek (4)

 Beheshti et al. [19] propose the MPSO algorithm to carry out a global search over entire search space with
accelerating convergence speed and avoiding local optima. The median position of particles and the worst and median fitness
values of the swarm are incorporated in the standard PSO to achieve the mentioned goals. In MPSO, each particle updates its
velocity based on Eq. (5):

t
ij

t
ij

t
ij Mvv +=+1 (5)

where Mij represents the median-oriented acceleration which is defined as follows:

))()((21
t
ij

t
mj

t
j

t
ij

t
mj

t
ij

t
i

t
ij xpgrxppraM −−+−−= (6)

where pmj is the current median position of the swarm in the jth dimension. ai is acceleration factor as:

tt

tt
it

i MaxfitMedfit
Maxfitfit

A
−

−
= (7)

∑=
=

N

j

t
j

t
i

t
i AAa

1
 (8)

where fiti represents the fitness value of the particle i, Maxfit and Medfit are the current maximum and median fitness values
of swarm.

Multi-agent Simulated Annealing Algorithm
 SA algorithm is commonly said to be the oldest among the meta-heuristics and surely one of the first algorithms that
had an explicit strategy to avoid local minima. The origins of SA are in statistical mechanics (Metropolis algorithm) and it
was first presented as a search algorithm for combinatorial optimization problems. The fundamental idea is to allow moves
resulting in solutions of worse quality than the current solution in order to escape from local minima. The probability of
performing such a move is decreased during the search through parameter temperature.

 SA’s performance depends mainly on the following four ‘‘enough’’: (a) the initial temperature is high enough, (b)
the temperature is cooled slowly enough, (c) the parameter space is sampled often enough, (d) the stop temperature is low
enough. These requirements make the SA converge very slowly in most cases [20]. In order to decrease its computing time,
some researchers have studied Parallel SA algorithms based on population based intelligent algorithm, such as those using
genetic operators to exchange information [21-23], and MSAs which use learning-based sampling to produce candidate
solution [14-15, 24].

 MSA algorithm based on PSO takes advantage of the learning ability of PSO and the hill-climbing ability of SA. A
population of agents runs SA algorithm collaboratively. Like particles in PSO algorithm, each agent has a velocity, a position
and limited memory. It can remember the best position it has ever visited. In order to generate a candidate solution, a random
dimension is generated first. And then equation (1) and (2) are used to calculate the new velocity and candidate solution.
Finally the Metropolis criterion is used to decide whether to accept the new solution.

BTAIJ, 10(24) 2014 Changying Wang et al. 14971

 Algorithm 1 is the pseudo code of MSA. Where x, v, and pb are all 2-dimensional arrays. The x represents positions
of all agents, x[i] represents the position of i-th agent, and x[i][j] represents the j-th dimensional position of i-th agent.
Similarly, the v represents velocities of all agents, v[i] represents the velocity of i-th agent, and v[i][j] represents the j-th
dimensional velocity of i-th agent. The pb represents best previously visited positions of all agents, pb[i] represents the best
previously visited position of i-th agent, and pb[i][j] represents the j-th dimensional value of best previously visited position
of i-th agent. Variable gb is a 1-dimensional array, which represents the best previously visited position of all agents. In line
19, agent will change the direction of its velocity if the solution is not improved. We call this opposite velocity strategy,
which can be viewed as an application of opposition-based learning.

Algorithm 1 MSA
1. Initialize parameter w, k, c1, c2, t0 and a;
2. For each agent i from 1 to M
3. Generate position x[i] and velocity v[i] randomly;
4. pb[i] = x[i];
5. End For
6. gb = findBest(x); //to find the best agent in population
7. t = t0; //initial temperature
8. While (End condition is not met)
9. For each agent i from 1 to M
10. Repeat the following operation sampling times
11. Candidate solution y = x[i];
12. Generate a dimension j randomly;
13. Calculate j-D velocity v[i][j] using (3);
14. Calculate j-D position y[j] using (2);
15. e = f(y) – f(x[i]);
16. If (e < 0 OR random() < exp(-e/t)) Then
17. x[i] = y;
18. End if
19. If (e >= 0) then v[i][j] = - v[i][j]
20. End Repeat
21. If (x[i] is better than pb[i]) Then pb[i] = x[i];
22. If (x[i] is better than gb) Then gb = x[i];
23. t = at
24. End for
25. End while
26. Return gb

MULTI-STRATEGY MULTI-AGENT SIMULATED ANNEALING ALGORITHM BASED ON PSO ALGORITHM

Effect of Perturbation Equations
 Because different PSO algorithms use different velocity and position equations to produce new velocity and
position, we may use different equations to produce candidate solutions in MSA. In order to observe the effect of those
equations (Because those equations are used to produce perturbation for current position, we call them perturbation equations
hereafter.), we compare the performance of CPSO and MPSO on F3, F4, F9, and F10 functions (Those functions are listed in
section 4.1). Results, which are recorded as function error value and reported in Table 1, show how the performance of PSO
changes with different perturbation equations. MPSO has better performance on F3 and F4 functions, but CPSO has better
performance on F9 and F10 functions. The iteration process of median solution of CPSO and MPSO on the 4 test functions
are displayed in Fig. 1 to Fig.4 respectively. Those figures show clearly that different test function may require different
perturbation equation. Taking into account this factor, we classify agents in MMSA as CPSO type or MPSO type. A CPSO
type agent will use Eq. (3) to produce candidate solution, and a MPSO type agent will use Eq. (5) to produce candidate
solution. In the initialization step, half of the agents will be set as CPSO type, and the others will be set as MPSO type.

Table 1 : Effect of perturbation equations

fun
CPSO MPSO

Best Median Ave Best Median Ave
F3 7.55E-15 1.78 1.79 4.00E-15 4.00E-15 4.00E-15
F4 0 3.45E-2 0.03 0 0 0
F9 1.57E-32 2.03E-31 0.30 0.66 1.12 1.07
f10 1.35E-32 1.22E-31 0.48 31.56 31.95 31.93

14972 Multi-strategy multi-agent simulated annealing algorithm based on particle swarm optimization algorithm BTAIJ, 10(24) 2014

Figure 1 : Iteration process of median solution on F3 function

Figure 2 : Iteration process of median solution on F4 function

Figure 3 : Iteration process of median solution on F9 function

Figure 4 : Iteration process of median solution on F10 function

BTAIJ, 10(24) 2014 Changying Wang et al. 14973

Effect of Number of Perturbed Dimensions
 Performance of MSA may be affected by the number of perturbed dimensions (PD) used to generate candidate
solution. MSA with low PD may search the solution space more finely, but it may have much slow convergence speed. Due
to interfering among dimensions, MSA with large PD may not be able to search the solution space finely enough. To
investigate the effect of variant PD on MSA, we experimented with different PD in [1, 5, 10, 15, 20, 25, 30] on function F1
and F6. Results, reported in Table 2, show how the performance of MSA changes with the PD. For F1 function, MSA has
best performance when PD is 20. For F7 function MSA has best performance when PD is 5. Taking into account that
different test function may have different optimal PD, we use a random strategy to generate PD from [1, D] as following
pseudo-code.

Method 1 producePD()
PD = 1
While (rand(0,1) > p) and (PD < D)

PD = PD + 1
End While
Return PD

 Parameter p is a used to control the distribution of PD.

Table 2 : Effect of number of perturbed dimensions

PD
F1 F7
Best Worst Ave Best Worst Ave

1 4.77E-118 8.99E-109 7.53E-110 0.70 1.20 0.96
5 5.64E-199 8.19E-196 1.04E-196 0.40 0.90 0.61
10 1.68E-273 1.29E-269 1.38E-270 0.40 1.40 0.94
15 1.0E-323 7.07E-318 6.73E-319 0.80 2.40 1.41
20 0 0 0 1.20 3.30 1.97
25 0 4.0E-322 2.00E-323 1.80 4.30 2.66
30 2.79E-243 1.36E-207 5.52E-209 2.00 4.70 3.07

Sensitivities to Population Size
 Performance of MSA is sensitive to the selected population size. This is easily conceivable because MSA employs a
one-to-one perturbation strategy. Therefore, if a very large population size is selected, then MSA may have good
diversification, but may exhaust the fitness evaluations very quickly without being able to locate the optimum. A small
population size may have good intensification, but may make MSA trapped into local minimum occasionally. To investigate
the sensitivity of MSA to variations of population size, we experimented with different population sizes from 10 to 100 at
increments of 10 on function F1 and F4. Results, reported in Table 3, show how the performance of MSA changes with the
population size. MSA has good performance with a smaller population size for F1 function, but is more robust with a larger
population size for F4 function. A population declining strategy may have better trade-off between diversification and
intensification [25]. In the early stage, large population can enlarge searching range, and as population declines in successive
iterations, more function evaluation times may be used to search in promising areas.

Table 3 : Sensitivities to population size

P
F1 F4
Best Worst Ave Best Worst Ave

10 0 4.4E-323 1.0E-323 0 2.95E-2 1.35E-3
20 1.2E-175 2.1E-165 9.4E-167 0 9.87E-3 3.95E-4
30 1.5E-121 6.4E-108 2.7E-109 0 1.06E-9 4.24E-11
40 8.12E-87 4.81E-80 5.63E-81 0 0 0
50 1.25E-70 8.60E-64 1.89E-64 0 0 0
60 1.37E-56 1.03E-51 1.01E-52 0 0 0
70 4.04E-48 4.68E-44 5.89E-45 0 0 0
80 2.02E-41 1.56E-37 2.08E-38 0 0 0
90 3.32E-37 6.87E-33 1.14E-33 0 0 0
100 1.51E-33 2.07E-29 3.92E-30 0 0 0

14974 Multi-strategy multi-agent simulated annealing algorithm based on particle swarm optimization algorithm BTAIJ, 10(24) 2014

Multi-strategy MSA Algorithm
 Based on the analysis of above sections, we describe MMSA algorithm as following algorithm 2. In algorithm 2,
array type stores the type of perturbation equation used by agent. Line 16 to Line 22 are used to produce new candidate
solution, whose values, stored in PD successive dimensions beginning from j, are updated using corresponding perturbation
equation according to the value in type[i]. If type[i] is “CPSO”, then agent i will use Eq. (3) to produce new velocity (see line
20), otherwise, agent i will use Eq. (5) to produce new velocity. Line 27 to Line 31 are opposite velocity strategy which is an
application of opposition-based learning. In line 36, MMSA keep the best half agents in population after each quarter of
function evaluation times has been spent.

Algorithm 2 MMSA
1. Initialize parameter w, k, c1, c2, t0 and a;
2. For each agent i from 1 to M
3. Generate position x[i] and velocity v[i] randomly;
4. pb[i] = x[i];
5. If Mod(i, 2) == 0 Then
6. type[i] = “CPSO”;
7. Else
8. type[i] = “MPSO”;
9. End if
10. End For
11. gb = findBest(x); //to find the best agent in population
12. t = t0; //initial temperature
13. While (End condition is not met)
14. For each agent i from 1 to M
15. Repeat the following operation sampling times
16. Candidate solution y = x[i]
17. Generate a dimension d randomly
18. PD = producePD()
19. For j = d to d + PD - 1
20. Calculate v[i][j] according to type[i];
21. y[j] = y[j] + v[i][j];
22. End for
23. e = f(y) – f(x[i]);
24. If (e < 0 OR random() < exp(-e/t)) Then
25. x[i] = y;
26. End if
27. If (e >= 0) Then
28. For j = d to d + PD - 1
29. v[i][j] = - 0.5 * v[i][j];
30. End for
31. End If
32. End Repeat
33. If (x[i] is better than pb[i]) Then pb[i] = x[i];
34. If (x[i] is better than gb) Then gb = x[i];
35. t = at;
36. Declining the population size if necessary
37. End for
38. End while
39. Return gb

SIMULATION RESULTS

Experimental Approach
 For comparison, the experiments use ten non-linear benchmark functions which are used in many literatures. Those
functions are listed as follows:
(1) Sphere Function

100,)(
1

2
1 ≤∑=

=
i

n

i
i xxf x

BTAIJ, 10(24) 2014 Changying Wang et al. 14975

(2) Generalized Rosenbrock’s Function

30,))1()(100()(
1

1

222
12 ≤−+−=∑

−

=
+ i

n

i
iii xxxxf x

(3) Ackley’s Function

32,20

)2cos1exp()12.0exp(20)(
11

2
3

≤++

−−−= ∑∑
==

i

n

i
i

n

i
i

xe

x
n

x
n

f πx

(4) Generalized Griewank’s Function

600,1)cos(
4000

1)(
1 1

2
4 ≤+∑ ∏−=

= =
i

n

i

n

i

i
i x

i
xxf x

 (5) Generalized Rastrigrin’s Function

12.5,)10)2cos(10()(
1

2
5 ≤∑ +−=

=
i

n

i
ii xxxf πx

(6) Generalized Schwefel’s Problem 2.26

500,)sin()(
1

6 ≤∑−=
=

i
n

i
ii xxxf x

 (7) Salomon

100 ,11.02cos)(
1

2

1

2
7 ≤+∑+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑−=

==
i

n

i
i

n

i
i xxxf πx

 (8) Whitely

100|| ,)1()(100 where

;1)cos(
4000

)(

222
,

1 1
,

2
,

8

≤−+−=

∑ ∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−=

= =

iiijji

n

j

n

i
ji

ji

xxxxy

y
y

f x

(9) Generalized Penalized Function 1

⎪
⎩

⎪
⎨

⎧

−<−−

≤≤−
>−

=

++=

≤+

⎟
⎠

⎞
⎜
⎝

⎛
−++−+=

∑

∑

=

−

=
+

axaxk

axa
axaxk

mkaxu

xy

xxu

yyyy
n

f

i
m

i

i

i
m

i

i

ii

i

n

i
i

n

i
niii

,)(

,0
,)(

),,,(

)1(
4
11

50,)4,100,10,(

)1())(sin101()1()(sin10)(

1

1

1

2
1

222
9 πππx

 (10) Generalized Penalized Function 2

14976 Multi-strategy multi-agent simulated annealing algorithm based on particle swarm optimization algorithm BTAIJ, 10(24) 2014

50,)4,100,5,()3(sin1.0

))2(sin1)(1())3(sin1()1(1.0)(

1

2

1

1

2
1

22
10

≤++

+−++−=

∑

∑

=

−

=
+

i

n

i
ii

n

i
nnii

xxux

xxxxf

π

ππx

 In order to observe the performance of MMSA algorithms, we compare MMSA with the classical CPSO [18], the

newly proposed MPSO [19], MSA using CPSO (MSAC), and MSA using MPSO (MSAM) on above 10 functions. Each
experiment was run 25 times with random initial values of x and v in the range indicated in corresponding equation. The total
function evaluation times is set to 10000*D, where D is the dimension of test function.

Results for Fixed Function Evaluation Times
 Table 4 is the experiment results for fixed function evaluation times. It lists the mean function error value and rank
for 25 runs of the ten test functions respectively. Table 4 shows that MMSA has best performance on eight test functions. The
average rank of MMSA is 1.5, which is the best among the five algorithms. The bad performance of MMSA on function F2
is caused by two factors: (1) both perturbation equations are not ideal for F2 function. This can be confirmed by the bad
performance of CPSO and MPSO; (2) F2 prefers low PD. If the PD is fixed to 1, the result of MMSA is 2.94E-01, which is
best among the five algorithms. It suggests that more intelligent way is needed to control the parameter PD.

Table 4 : Compare MMSA with CPSO, MPSO, MSAC, and MSAM

fun CPSO MPSO MSAC MSAM MMSA
Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank

F1 4.04E-155 3 3.94E-207 2 7.02E-109 5 1.22E-108 4 6.77E-222 1
F2 2.03E+00 2 2.90E+01 4 1.78E+00 1 2.42E+00 3 3.22E+01 5
F3 1.79E+00 5 4.00E-15 1 7.83E-15 3 3.19E-01 4 4.00E-15 1
F4 3.27E-02 5 0 1 2.96E-04 3 1.28E-03 4 0 1
F5 4.09E+01 5 0 1 0 1 7.88E+00 4 0 1
F6 5.94E+03 4 9.33E+03 5 1.17E+03 2 3.33E+03 3 2.65E+02 1
F7 6.44E-01 3 9.99E-02 1 9.64E-01 4 1.99E+00 5 3.28E-01 2
F8 4.06E+02 4 4.13E+02 5 2.13E+02 3 3.27E+01 2 0 1
F9 2.99E-01 4 1.07E+00 5 1.57E-32 1 8.30E-09 3 1.57E-32 1
F10 4.79E-01 4 3.19E+01 5 1.35E-32 1 4.38E-07 3 1.35E-32 1
Aver Rank 3.9 3 2.4 3.5 1.5
Final rank 5 3 2 4 1

Iteration Process
 In order to compare the convergence process of MMSA algorithm with other algorithms, we draw the iteration
process of mean function error value of the five algorithms on the 10 problems in Fig. 5 to Fig. 14. Those figures show that,
in the early stage, large population size guarantees that the convergence speed is not too aggressive, so MMSA can have good
exploration ability. As showed in Fig.10 and Fig.12, the advantage of MMSA algorithm is extremely apparent on function 6
and function 8.

Figure 5 : Iteration Process for F1 Function

BTAIJ, 10(24) 2014 Changying Wang et al. 14977

Figure 6 : Iteration Process for F2 Function

Figure 7 : Iteration Process for F3 function

Figure 8 : Iteration Process for F4 function

Figure 9 : Iteration Process for F5 function

14978 Multi-strategy multi-agent simulated annealing algorithm based on particle swarm optimization algorithm BTAIJ, 10(24) 2014

Figure 10 : Iteration Process for F6 Function

Figure 11 : Iteration Process for F7 Function

Figure 12 : Iteration Process for F8 Function

Figure 13 : Iteration Process for F9 Function

BTAIJ, 10(24) 2014 Changying Wang et al. 14979

Figure 14 : Iteration Process for F10 Function

CONCLUSION AND FUTURE WORK

 Motivated by the factor that different problem may require different parameters for MSA to achieve good
performance, this paper proposes a Multi-strategy MSA algorithm for continuous function optimization problems. In MMSA
algorithm, three parameter control strategies, multiple perturbation equations, variant number of perturbed dimensions and
declining population size, are used to enhance the performance of MSA algorithm. Declining population size strategy not
only can achieve better balance between exploration and exploitation, it can selects agents with suitable perturbation equation
to survive also. Simulation results confirm the advantage of the MMSA algorithm.

 As a first step of study, we use the equations of CPSO and MPSO algorithm only, use fixed strategy in variant
number of perturbed dimensions, and use declining population size. Further study can be done in a move adaptive way, such
as follows: (1) to use more perturbation equations; (2) to change number of perturbed dimensions more intelligently; (3) to
control population size adaptively.

ACKNOWLEDGMENTS

 This work was supported by Nature Science Foundation of Fujian Province of P. R. China (No. 2013J01216, and
2012D081) and The State Bureau of Forestry 948 project (No.2013-4-65).

REFERENCES

[1] Cerny, V., “Thermo dynamical approach to the travelling salesman problem: an efficient simulation algorithm”. Journal

of Optimization Theory and Application. Vol.45, No.1, pp.41-51, 1985.
[2] Kirkpatrick S., Gelatt C. D., and Vecchi M. P., “Optimization by simulated annealing”, Science, Vol. 220, No. 4598,

pp.671-680, 1983.
[3] Henderson D., Jacobson S. and Johnson A., “The theory and practice of simulated annealing”. Handbook of

metaheuristics, Vol. 57, pp.287-319, 2003.
[4] Hamma, B., Viitanen, S. and Torn, A., “Parallel continuous simulated annealing for global optimization”. Optimization

Methods and Software, Vol.13, No. 2, pp.95-116, 2000.
[5] Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wesley. Boston, MA,

USA, 1989.
[6] Storn, R. and Price, K., “Differential Evolution – A Simple and Efficient Heuristic for global Optimization over

Continuous Spaces”. Journal of Global Optimization, Vol.11, No.4, pp. 341-359, 1997.
[7] Rajathy R., Gnanadass R., Manivannan K. and Kumar H., “Computation of Capacity Benefit Margin using Differential

Evolution”, Int. J. of Computing Science and Mathematics, Vol.3, No.3, pp.275 – 287, 2010.
[8] Kennedy, J. and Eberhart, R., “Particle Swarm Optimization”, In: IEEE Intl Conf on Neural Networks, Perth, Australia,

pp.1942-1948, 1995.
[9] Eberhart, R. and Kennedy, J., “A New Optimizer Using Particle Swarm Theory”, In: Proc of the Sixth International

Symposium on Micro Machine and Human Science, Nagoya, Japan, pp.39-43, 1995.
[10] Gao Y.X., Wang Y.M. and Pei Z.L., “An improved particle swarm optimisation for solving generalised travelling

salesman problem”, Int. J. of Computing Science and Mathematics, Vol.3, No.4, pp.385 – 393, 2012.
[11] Yang X.S., “Firefly algorithms for multimodal optimization”, in: Stochastic Algorithms: Foundations and Applications,

SAGA 2009, Lecture Notes in Computer Sciences, Vol. 5792, pp. 169-178, 2009.
[12] Yang X. S. and Deb S., “Cuckoo search via Lévy flights”, In: Proceedings of World Congress on Nature & Biologically

Inspired Computing, IEEE Publications, USA, pp. 210-214, 2009.
[13] Yang X.S. and Deb S., “Engineering Optimization by Cuckoo Search”, International Journal of Mathematical Modeling

and Numerical Optimization, Vol. 1, No. 4, pp.330-343, 2010.

14980 Multi-strategy multi-agent simulated annealing algorithm based on particle swarm optimization algorithm BTAIJ, 10(24) 2014

[14] Zhong Y.W., Ning J. and Zhang H., “Multi-agent simulated annealing algorithm based on particle swarm optimization
algorithm”, International Journal of Computer Applications in Technology, Vol. 43, No. 4, pp.335-342, 2012.

[15] Zhong Y.W., Wang L.J., Wang C.Y. and Zhang H., “Multi-agent simulated annealing algorithm based on differential
evolution algorithm”, International Journal of Bio-Inspired Computation, Vol.4, No.4, pp.217-228, 2012.

[16] Lin J., Ning J., Du Q.L., and Zhong Y.W., “Multi-agent Simulated Annealing Algorithm Based on Particle Swarm
Optimization Algorithm for Protein Structure Prediction”. Journal of Bionanoscience, Vol.7, No.1, pp.84-91, 2013.

[17] Shi, Y. and Eberhart, R., “Parameter selection in particle swarm optimization”, In: Proceedings of the Seventh Annual
Conference on Evolutionary Programming, New York, USA, pp.591-600, 1998.

[18] Clerc, M., “The swarm and the queen: towards a deterministic and adaptive particle swarm optimization”, In:
Proceedings of the IEEE Congress on Evolutionary Computation, Washington, DC, USA, pp.1951 -1957, 1999.

[19] Beheshti, Z., Shamsuddin, S. M. H., & Hasan, S., “MPSO: median-oriented particle swarm optimization”. Applied
Mathematics and Computation, Vol.219, No.11, pp.5817-5836, 2013.

[20] Sadati, N., Amraee, T., and Ranjbar, A.M., “A global Particle Swarm-Based-Simulated Annealing Optimization
technique for under-voltage load shedding problem”, Applied Soft Computing. Vol.9, No. 2, pp.652-657, 2009.

[21] Hiroyasu T., Miki M. and Ogura M., “Parallel Simulated Annealing using Genetic Crossover”. Science and Engineering
Review of Doshisha University. Vol.41, No.2, pp.130-138, 2000.

[22] Mahfoud W. and Goldberg E., “Parallel recombinative simulated annealing: A genetic algorithm”. Parallel Computing.
Vo.21, No.1, pp.1-28, 1995.

[23] Ohlídal, M., Schwarz, J., “Hybrid parallel simulated annealing using genetic operations”. In Proc of Mendel 2004 10th
International Conference on Soft Computing. Brno, CZ, FSI VUT, pp.89-94, 2004.

[24] Zhong Y.W., Lin J., Yang H., and Zhang H., “Analysis of learning–based multi–agent simulated annealing algorithm
for function optimization problems”, International Journal of Computing Science and Mathematics, Vol.4, No.4,
pp.382-391, 2013.

[25] Wu, Z., Zhao, N., Ren, G., & Quan, T., “Population declining ant colony optimization algorithm and its applications”.
Expert Systems with Applications, Vol.36, No.3, pp.6276-6281, 2009.

