

__

*Author for correspondence; E-mail: ssivanantham@vit.ac.in

Int. J. Chem. Sci.: 14(S3), 2016, 769-776
 ISSN 0972-768X

www.sadgurupublications.com

MULTI-MASTER AMBA AHB PROTOCOL VERIFICATION
USING TLM BASED UVM ENVIRONMENT

SINNY P. SUNNY, S. SIVANANTHAM* and
C. PRALINE RAJABAI

Department of Micro and Nanoelectronics, School of Electronics Engineering, VIT University,
VELLORE (T.N.) INDIA

ABSTRACT

In the due course of time, due to rising development cost and density of VLSI chips and
turnaround time, it turns out to be critical to have a verification methodology, which empowers first pass
chips to be entirely functional and error free. Universal Verification Methodology (UVM) facilitates the
communication through TLM interface. On account of its excellent architecture of AMBA and simplicity
of AHB bus it has been widely used in several SOC designs. This paper is focused on developing a
Verification IP (VIP) for Multi-master AMBA AHB protocol using System Verilog based UVM
environment. AMBA-AHB provides a high bandwidth system bus which can perform multiple operations
in parallel. This project also depicts how Verification IP is used to verify the AHB Components-Arbiter,
Slave, Master and Decoder. With the UVM based VIP, it was able to achieve MDV (Metric Driven
Verification) and assertion based verification which has drastically minimized the time spent on
verification of a design.The Verification IP is developed using Cadence tool Ncsim and can be reused to
verify any AHB based system design.

Key words: AMBA-AHB, VIP, TLM, UVM, CDV, Coverage, Assertions, Burst, Arbiter.

INTRODUCTION

Designs are emerging as highly reusable and portable units, which in turn calls for
rising need of an efficient, reusable, plug n play verification infrastructure. Room for bugs in
a design has become negligible due to the reduced time to market. As a result, functional
verification is one among the challenging tasks. Verification Intellectual Property (VIP)
comprises of the overall verification environment, that aids design architects and verification
engineers for ensuring the design functionality. The VIP(s) are utilized as a part of almost all

 S. P. Sunny et al.: Multi-Master AMBA AHB Protocal…. 770

sections in simulation based verification. This reusable verification module includes BFMs,
protocol monitors, coverage blocks and traffic generators.

System on chip (SoC) designs calls for need of an on chip bus, which provides
efficient integration of various system components including memories (RAM, EEPROM
etc), application specific cores, processors (CPUs, DSPs). The rising complexity of designs
demands for a greater bandwidth system bus, which handles multiple operations
simultaneously. Multi-master AHB bus is been widely used in most SoC designs due to its
transparency and efficient architecture. In this project, System Verilog-based methodologies,
like Universal Verification Methodology (UVM), can be used to create a verification
environment for verification of ARM’s AMBA AHB Communication Protocol4. AHB is a
system bus with advanced higher performance and it can handle more than one master and
slave. It implements burst transfers (incr/wrap), split transactions, single-cycle handover of
bus master handover.

Verification IP is the one, which provides a smart way to verify the AHB
Components such as Master, Slave, Arbiter and Decoder. UVM Methodology is one of the
most suited methodology to be used for verification as it facilitates features like automation,
self-checking test bench and coverage analysis thereby reducing the time spent on verifying
a design3. It includes verification components like test, driver, monitor, environment, agent
and scoreboard, which are reusable. The verification environment is built with the test bench
components like the test, environment, agent, driver, sequencer, monitor, and scoreboard.
Verification is essential in all kinds of logic design5-8.

The paper intends to propose a verification IP for verifying multi master ahb
protocol based on System Verilog under Universal Verification Methodology (UVM)
guidelines2. The methodology aims to create a verification approach that creates a reusable
automatic process for verifying any AHB based SoC system design. The remainder of this
paper is organized as follow: Section II depicts the idea of functional verification, System
Verilog and UVM methodologies and also gives a brief overview of AMBA-AHB Protocol.
Segment III explains the verification environment and verification plan, which was
developed for verification of AHB. Section IV gives the detailed description of top module
and each classes of the UVM environment. Section V includes the results and completes
with conclusion.

Design and methodology

The Verification of the AMBA-AHB Protocol is done in SV/UVM based test
environment. The advantage of UVM based test bench environment is that it is coverage-

Int. J. Chem. Sci.: 14(S3), 2016 771

driven random based test environment. Both the directed test cases as well as the random
test cases are tested on the design IP to meet the full coverage of the design. AHB slave
is used to program memory registers. Fig. 1 shows an overview block diagram of the
design IP.

Fig. 1: Components of AHB-Slave DUT

Fig. 2: UVM environment

The verification of the AHB-Slave DUT is carried out by building the UVM TB as
shown in Fig. 2 and the same is explained as follows.

AHB Top module

 AHB DUT instantiated along with the interfaces. The Clock generator is also
implemented in top module. Here in the top module inbuilt method run test () is executed
and this method will execute all the test cases for the design. These Interfaces are used for
interaction with the DUT and the TB. Assertions are added to validate protocol, timing, etc.
Environment also includes the test classes and coverage collectors.

AHB Multi master environment

Environment class implements verification environments in UVM. In environment
class, multiple instances of master agents, and scoreboard is created using build () method.
Then various port connections details are made using the connect () method. The AHB
Multi-master Environment has 3 AHB master agents.

AHB Master agent

The register configuration of the DUT is done through the AHB interface and this is
achieved by the AHB agent. All the register read/write operation are done by the AHB agent.
Agents typically consist of three sub components Driver, Sequencer and Monitor. Active

 S. P. Sunny et al.: Multi-Master AMBA AHB Protocal…. 772

agents contain these three sub components. However, passive agent generally requires
monitor only. AHB Master agent is an active agent. It extends from uvm agent class. In
agent class object instances of the driver, monitor and sequencer are created in build phase.
Connections between the driver, sequencer and monitor are specified in the connect phase.
Signals are sent from driver to scoreboard using analysis ports.

AHB Driver

Drives the signals to reset state during the reset and when it is out of reset, driver
requests and receives the transaction from sequencer. And it request the arbiter for bus
access by asserting the bus request signal and once it receives the grant, the transaction is
converted to pin wiggles as per the direction of operation and type of burst. When burst type
is wrap, it calculates the wrap boundary address and it is driven correspondingly. It also
monitors for the Response from the slave & Grant going low and takes appropriate decision.
If slave response is error then the transaction is terminated. If slave response is split/retry or
grant goes low then transaction is terminated and the driver creates a new transaction with
the unsent transfers in the burst and requests for the BUS again.

AHB Sequence

A sequence is series of transaction and sequencer is used for controlling the flow of
transaction generation. UVM sequencer has a port seq item export, which is used to connect
to uvm driver for transaction transfer. This sequence of transactions should be defined in
body () method of uvm sequence class. UVM has macros and methods to define the
transaction types.

Fig. 3: AHB Single master agent

AHB Monitor

Monitor is defined by extending uvm monitor. Monitor gets the input signals from
the interface using mod ports. These are used for getting the idea of whether data is

Int. J. Chem. Sci.: 14(S3), 2016 773

generated as required. It is not necessary that master requires a monitor. In this project, there
is an additional bus-request Monitor that monitors the bus-request signals from each master
agent. This is used to obtain multi-master coverage.

AHB Scoreboard

Scoreboard is implemented by extending uvm scoreboard. A shadow memory,
duplicating the memory in DUT is maintained inside scoreboard. Whenever a WRITE
transaction is received from monitor, shadow memory is updated with the write data into
that particular address. Similarly, whenever a READ transaction is received from monitor,
expected value is taken from shadow memory and the actual value from slave DUT.
Expected and Actual values are compared and displays PASS/FAIL.

RESULTS AND DISCUSSION

The Simulation is done using Cadence Ncsim EDA Tool. Test cases to verify
various usecases were run and results obatained for few of them are added below.

Multi master test

Here we have 3 masters requesting the bus with priorities in the order master 0 >
master 1 > master 2 as shown in Fig. 4. Even during a transaction by a master of lower
priority if higher priority master requests for the bus the transaction will be stopped
temporarily and grant will be assigned to higher priority master. The lower priority master
will regain the access of the bus only after this master transaction gets completed.

Fig. 4: Multi master wrap 4 test case

WRAP4 Write test

For burst type wrap (Fig. 5), it calculates the wrap boundary address based on the
starting address and the address gets wrapped while reaching this boundary after it’s

 S. P. Sunny et al.: Multi-Master AMBA AHB Protocal…. 774

incremented. Here DUT supports size of 32 bits so increment happens by 4 bytes. Start
address given is 0 x 38, which calculates the wrap boundary as 0 x 3f, so during the third
cycle it wraps to 0 x 30 and increment continues. The transfer type signal indicates the
current transfer type. During the first cycle of any transfer it should be non-sequential and
for the remaining it should be sequential.

Fig. 5: wrap 4 write test case

INCR 4 Read test

For burst type incr, there is no boundary unlike in wrap. Start address given is 0 x 58
and increment continues for 4 addresses by 4 bytes. The transfer type signal indicates the
current transfer type. During the first cycle of any transfer it should be non-sequential and
for the remaining it should be sequential.

Fig. 6: INCR 4 read test case

Locked transfer test and coverage analysis

Locked transfer feature ensures that any lower priority master using the bus for
performing an important transfer which shouldn’t be interrupted requests for the locked
access of the bus which prevent any other higher priority bus from getting access of the bus.
Here master 1 wants to perform uninterrupted transfer so it requires a locked access of bus.
During master 1 performing operation master 0 with higher priority requests for the bus but
it receives the grant only after master 0 has completed its operation.

Int. J. Chem. Sci.: 14(S3), 2016 775

Fig. 7: Locked transfer test case

Fig. 8: Coverage report

Fig. 9: Cover points analysis report

The coverage report analysis is done to measure the functional coverage. It indicates
the use cases of the DUT tested and which are missed in the test cases. The uses cases are
defined as cover points based on certain conditions called bins. If these conditions are met
then that functionality is said to be hit or covered. Here the overall coverage percentage
obtained is 71.9% and overall average grade is 82.95%. Coverage value less than 100%

 S. P. Sunny et al.: Multi-Master AMBA AHB Protocal…. 776

indicates some of the functionalities are missed. Here the DUT is having certain limitations,
(i) DUT supports only 32 bit size and (ii) DUT doesn’t support retry/split response. These
cover points are not hit due to the limitation and therefore the coverage is less than 100%.

CONCLUSION

This project is aimed at performing Verification of multi master amba ahb protocol
using System Verilog and UVM methodology. Test cases were coded to check each of the
features of AHB including multi master operation, single and all types of burst operations
both read and write, locked transfer operation, error case like invalid address. Coverage
model was also implemented to analyze the functional coverage report. Overall average
functional coverage value was obtained as 82.95%. This highlights few limitations of DUT
and calls for improvement of the DUT.

REFERENCES

1. ARM AMBA 2 AHB Protocol Specification AHB2.

2. www.accellera.org, Universal Verification Methodology 1.1 User’s Guide.

3. www.verificationacademy.com, System Verilog and UVM Guidelines.

4. ARM AMBA protocol specifications and design tools [www.arm.com]

5. S. Aravind Babu, S. Babu Ramki and S. Sivanantham, Design of Parallel Architecture
Co-Processor for Particle Swarm Optimization Algorithm, Indian J. Sci. Technol.,
8(36), Art. No. 90316 (2015).

6. C. Patel, M. Srikanth, K. C. Kumar and S. Sivanantham, Monte-Carlo Black-Scholes
Implementation Using Open CL Standard, Indian J. Sci. Technol., 8(36), Art. No.
90318 (2015).

7. J. More, R. Suryavanshi, G. Dasarwar, S. Sivanantham and K. Sivasankaran, FPGA
Implementation of Universal Asynchronous Transmitter and Receiver, IC-GET 2015,
Proceedings of 2015 Online International Conference on Green Engineering and
Technologies, Art. No. 7453796 (2015).

8. J. Jean Jenifer Nesam and S. Sivanantham, An Efficient Single Precision Floating
Point Multiplier Architecture Based on Classical Recoding Algorithm, Indian J. Sci.
Technol., 9(5), Art. No. 87159 (2016).

Accepted : 11.10.2016

