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1. INTRODUCTION

Mathematical modelling is the major tool for pre-
dicting population dynamics of insect pests. The changes
in pest management objectives should be followed by a
change in modelling methodology. Ecosystems with lim-
ited diversity are vulnerable to the rapid colonization of
the host by some biological organisms. The task of many
IPM (Integrated Pest Management) practices is to in-
crease the diversity of an agroecosystem as well as the
pest management. To this end, IPM very much encom-
passes and makes use of the cultural control tactics and
practices that were also identified. It also embraces the
practice of using biopesticides[15].

2. Model

A model is a representation or abstraction of a sys-
tem in some form other than the original[28,29].

Smith[24] indicates that a model is a description of
general ideas that includes as little detail as possible.

Manetsch and Park[16] indicate a model is an ab-
stract representation of a system that behaves like the
real-world system in certain respects.

Jeffers[9] defines a model as any formal expression
of the relationship between defined symbols.

3. System

A system is defined as something that has a set of
characteristic common to all systems and lacking in things
that are not systems[18].

Manetsch and Park[16] defined system as a set of
interconnected elements organized towards a goal or
set of goals separate from the environment and are de-

termined by factors completely independent or exter-
nal to the system.

Teng[29] indicates that the whole of the system is
more than the sum of its parts.

4. How can model be useful ?

1. To predict the pest population will behave in rela-
tion to some expected changes in the prevailing en-
vironmental condition.

2. To seek general conclusion about how organisms
interact with each other and their environment.

3. To decide the pest managers how the agro-ecosys-
tem should be changed to favour economy and con-
servation and not to favour pests.

4. Models have been used whenever a scientist wanted
to explore as well as understand the complexities of
agro-ecosystem.

5. Where data is not available, a model can be more
useful.

4.1. Examples

Biological agents are to be sought for the control of
introduced pest. How can we predict which is likely to
be the most effective agent?

Little information about new pest on the factors at-
tacking the level of attack, critical informations should
be collected?

5. Modelling process

Modelling process can be involved in two phases.
Phase I consist of conception of model, the construc-
tion of the model and sensitivity analysis. Phase II is the
implication of model.
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5.1. Phase I[9,29]

5.1.1. Defining and bounding the system that is to
be modelled

The objectives of this step should include the iden-
tification of how resolute the modelling process should
be in order to address the stated problem, as well as
the breadth of scale that should be considered for de-
veloping and applying the model.

5.1.2. Evaluating the historical and current knowl-
edge about the system

After these questions are answered, it is always good
to conduct a thorough review of the literature and find
out from a historical perspective, what is known about
the system of interest.

5.1.3. Developing an initial conceptual (system)
model

For this, we can use flow charts with writing com-
puter programs. However, just about any system of
�boxes� and arrows will be sufficient to show the vari-

ables and their relations to one another.

5.1.4. Collecting data and constructing equations
to describe the system

After constructing a conceptual diagram, collect
some data through either a series of designed experi-
ments or observational studies or both. This is not nec-
essarily so, as for some problems, constructing an el-
egant word model or perhaps a knowledge-based sys-
tem may prove satisfactory.

5.1.5. Structuring a detailed system model for com-
puter modelling

A system is sufficiently constructed for detailed
analyses, as well as simulations, to be needed.

5.1.6. Translating the model into a selected lan-
guage for computer performance

The constructed model is translated into a com-
puter language for its use. Again, it is assumed that the
model is mathematical in nature, is very complex or both
and should be embedded in a computer program for
ease of use. However, if the model is not of a math-
ematical nature, it may be represented by a knowledge-
based system. Further, if the model is non-mathemati-
cal and simple in its depth or breadth, a decision TABLE
or decision tree may be sufficient.

5.1.7. Verification

Some errors are obvious and harder to detect. It is
necessary to check every part of the programme care-
fully for such errors and to run the whole program on
sample values for which the output is known.

5.1.8. Validation

Once a model has been verified it is necessary to
compare the output from the model with independent
field measurements of this variable for a range of places
and time.

5.1.9. Sensitivity analysis

Sensitivity analysis is to know which element or
parameter of the system has the greater impact on the
output. A sensitive parameter is one which has a large
impact on model output for a relatively small change in
its own value. A sensitive parameter may actually show
very little variation in nature.

5.2. Phase II (Kraemer, 1984)

5.2.1. Introduction

Model introduction refers to a period during which
the model is considered for adoption/ during this step,
some early initial testing may be conducted and the re-
sults, along with the introductory information that was
presented with the model, are used to make the deci-
sion on model adaption.

5.2.2. Adaptation

Model adaptation refers to the period after model
introduction during which broader support for the model
is developed and plans are made for instructing and
training practitioners on its use as well as the interpreta-
tion of its output. During model adaptation, the model
begins to be widely used.

5.2.3. Incorporation

Model incorporation is the step at which the model
is no longer a new entity but, rather, becomes a routine
part of the user�s operations. Research has shown that

the successful implementation of a model is influenced
by at least three factors: (i) The inherent technical char-
acteristics of the model itself (ii) The social setting in
which the model is used (iii) The used and impacts of
the model as experienced by the user. Interestingly, it
has been hypothesized that �user� will not implement a

model unless the model also serves some political in-
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terests.

6. Types of models

6.1. Statistical models

Statistical models, including various forms of re-
gression analysis, offer a means of determining the value
of a response variable using a small number of explana-
tory variables. Theses models are purely based on em-
pirical observations.

6.2. Mechanistic models

Mechanistic models are constructed to represent
knowledge concerning the biological and ecological
processes that underline pest population dynamics, dam-
age and control[6].

6.2.1. Analytical models

Analytical models are those for which explicit for-
mulae are derived for predicted values or distributions.
They include regression and multivariate models, ex-
perimental designs and the standard and theoretical,
statistical distributions. This model provides general in-
formation about the system by describing the charac-
teristics in a handful of relationship and parameters[11].
Analytical models have been used in developing host-
parasitoid relationship for sustainable biocontrol strat-
egies and for determining population changes. Analyti-
cal models have been used as a tool for developing
pest management principles and ecological theory.

6.2.2. Simulation models

Simulation is the process of designing a model of a
real system and conducting experiments with the model
for the purposes of understanding the behaviour of the
system or of evaluating various strategies for the op-
eration of the system[25]. Simulation modelling is used in
pest management mainly in relation to the population
dynamics of crop, pests and their natural enemies. In
pest management, decision-making simulation models
are used for forecasting of pest population changes and
for testing the wide range of management options of the
modelled pest population. An example is the simulation
model of rice brown plant hopper (BPH), used to ac-
count for the role of different mortality agents in BPH
population dynamics, and to investigate the causes of
BPH outbreaks in tropical rice systems[7]. It has also
been used to determine the best time for application of
insecticides for BPH control based on reduction peak

density of the pest[3].

6.2.3. Rule-based models

Rule-based modelling is qualitatively equivalent to
conventional simulation modelling[6]. Without the need
to represent relationships between components of sys-
tem using mathematical equations, a rule-based ap-
proach provides a means by which subjective knowl-
edge about a system can be used to build models. In
rule-based models, subjective knowledge about a sys-
tem can be used to build a model. Any computer lan-
guage, which incorporates logical operations and if-then
statements and capacity for interaction can be used to
build a model. This includes the conventional program-
ming languages (Basic, Pascal, C etc), database
(dBASE, FoxPro etc.), spreadsheets (Supercalc, Lo-
tus 123, etc.,) and some expert system shells.

6.2.4. Spreadsheet based models

Spreadsheets are widely used for the storage and
management of biological data. In pest management,
spreadsheet models are ideal for quick, exploratory
models to get a feel for the range of likely outcomes
from possible control options. They are particularly use-
ful in a workshop setting where ideas can be tested
immediately on a spreadsheet model. A simple spread-
sheet model can be designed and built by participants
during the course of a few hours during a workshop
session. The result of a simple model can then from the
basis for further discussion, analysis and experimenta-
tion. Examples of the spreadsheet software are LO-
TUS, Quattro Pro and Excel, etc.

6.2.5. Inferential model

They have been proposed for modelling develop-
ment of an insect population that passes through a se-
ries of discrete developmental stages. The relationship
between an insect, its hosts and predators is often de-
pendent upon the relative phenologies of each other[8].
Understanding insect host phenology is useful in under-
standing ecological interactions as well as in managing
insect populations. Control of the insect population can
be made much more effective, if control measures can
be timed to coincide with the occurrence of the most
susceptible life stage of the insect. This technique has
been successfully used to describe the phenology of
post-diapause of spruce budworm, Choristoneura
fumiferana (Clemens) larvae. Phenological data on the
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budworm are collected annually and the information is
used to determine the timings of insecticidal sprays[8].

6.3. Optimization models

Optimization techniques, as name suggests, are pri-
marily concerned with prescriptive decision problems
in pest management. In Optimization decisions can be
made for the whole of growing season at once or
stepwise within each optimization period[34]. Simulation
and optimization are complementary tools in pest man-
agement.

7. Utility of modelling in insect pest management

7.1. Rice leaf folder

Prediction of leaf folder damage and yield loss in
susceptible rice cultivar IR 50 at different larval popu-
lations and crop periods under natural conditions were
studied by Pandi et al.[31] in two field experiments dur-
ing Kharif season.

7.1.1. Damage and yield loss with ensured infes-
tation of leaf folder without plant protection

Second instar larvae (3-4 day old) were released
at 30, 40, 60 and 80 days after sowing (DAS). The
treatment variants were one to seven larvae per hill,
with a control. Ten hills were maintained for each treat-
ment. The treatments were replicated three times. The
plants were unprotected after the release of larvae, which
allowed them to multiply freely. The damage was as-
sessed 15 days after larval introduction. In order to
assess the cumulative damage, the subsequent counts
were taken on the same plants, which were marked at
the first count. Damage assessment was carried out at
20 day intervals, starting 15 days after larval release.
i.e., counts were made at 45, 60, 80 and 100 DAS for
infestation at 30 DAS. For larval introduction at 40
DAS, assessment was made on 55, 80 and 100 DAS.
The counts were made at 75 and 100 DAS for infesta-
tion that was introduced at 60 DAS and for the 80 day
larval introduction only one count was taken at 95 DAS.
Finally, the hills were harvested separately and the grain
yield was assessed. The yield loss at different larval
populations and crop periods was assessed based on
uninfested control yield (TABLE 1).

7.1.2. Damage and yield loss with ensured infes-
tation of leaf folder with plant protection

The design and procedure for ensuring infestation

of the hills were similar to that described in the leaf folder
without plant protection experiment. One spray using
monocrotophos 36 WSC was given, based on the eco-
nomic threshold (ET). The ET at the vegetative stage is
10 per cent and at the reproductive stage it is 5 per
cent of leaf damage. The damage and yield assessment
were carried out in a similar manner to that of the un-
protected group.

7.1.3. Mathematical model

7.1.3.1. Prediction of damage

The Mitscherlich�s model was used for the predic-

tion of damage, because it was found to be the best,
based on correlation coefficient and goodness of fit[15]

and this model is of the form:
D (l,t) = D

M
 (1-c)

Where, D (l,t) = leaf damage at various larval loads and crop
Periods; l(t) = larval at the tth crop period; D

M
 = maximum dam-

age at given larval loads and crop periods;  and  are param-
eters to be estimated.

7.1.3.2. Prediction of yield

The rectangular hyberbola model was used for the
prediction of yield obtained, because it was found to
be the best, based on R² value and the prediction abil-

ity of the yield due to damage[17] and this model is of the
form:
Y (l, t) =  +D (l, t) -1

Where, y (l,t) = yield obtained after the infestation of various
larval loads at different crop periods; D (l,t) = leaf damage at
different larval loads and crop periods;  and  are parameters
to be estimated. The above models were estimated using the
non-linear methods of ordinary least squares (OLS).

7.1.4. Results

7.1.4.1. Yield loss

The damage on 40 DAS contributed for greater
fall in yield levels, the infestation at 30, 60 and 80 DAS
contributed for lesser yield levels. However, the fall in
yield increased with increasing larval population.

7.1.4.2. Unprotected crop
TABLE 1: Experimental design for damage and yield assess-
ment with plant protection

Crop age at 
infestation (DAS) 

Days on which ETL 
reached (DAS) 

Days on which spray 
given (DAS) 

30 
40 
60 
80 

35 
46 
65 
85 

35 
46 
65 
85 

Pandi et al.,[21]
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The yield loss was 3.12 to 25.07 per cent in the 30
day old crop and between 5.67 and 40.64 per cent in
40 day old crop for the larval populations ranging from
one to seven per hill (TABLE 2). It was found that,
although the damage suffered by the 40 day old crop
was comparatively less than that of the 30 day old crop,
the yield suffered by it was nearly twice that of the
younger crop. Older crops of 60 and 80 DAS were
found to have less damage than the 40 day old crop.
The yield loss was 7.38 to 14.35 per cent in the 60 day
old crop and 3.39 to 9.03 per cent in the 80 day old
crop for damage and yield loss in rice due to leaf folder
(TABLE 3).

7.1.4.3. Protected crop

The protection of the crop with monocrotophos 36
WSC avoided more yield loss. The yield loss suffered
by the 30 day old was 0.00 per cent for one larva and
11.63 per cent for seven larvae (TABLE 4). The yield
loss suffered by 40 day old crop was between zero
and 16.82 per cent, which was much less compared
with the unprotected crop of the same age. The yield
loss was only 5.43 per cent in the 60 and 2.44 per cent
in the 80 days infested crop for the highest larval load
of seven per hill (TABLE 5).

The damage caused on the 40 day infested crop
accounted for more yield loss. It has been reported
that the flag leaf is the main source of photosynthates
for the formation of grain and damage to this leaf might
result in a greater yield loss. The crop may coincide

TABLE 2:. Predicted yield loss due to leaf folder infestation at vegetative stage (unprotected crop)

No. of 
larvae/hill 

Damage (%) 
30 DAS Yield 
obtained (%) 

Yield 
loss (%) 

Damage (%) 
40 DAS Yield 
obtained (%) 

Yield loss 
(%) 

1 
2 
3 
4 
5 
6 
7 

Control 

20.13 
32.88 
43.15 
51.42 
58.09 
63.45 
67.78 
0.00 

96.88 
84.82 
80.22 
77.91 
76.56 
75.61 
74.93 

100.00 

3.12 
15.18 
19.78 
22.09 
23.44 
24.39 
25.07 
0.00 

10.18 
20.30 
29.79 
37.39 
43.83 
49.27 
53.88 
0.00 

94.33 
72.29 
66.00 
62.93 
61.21 
60.10 
59.36 

100.00 

5.67 
27.71 
34.00 
37.07 
38.79 
39.90 
40.64 
0.00 

D(l,t) = 85.7(1-0.9498e-0.2162l(t))(r=0.9850) t=30DAS; Y(l,t) = 4.8500+47.2600D (l,t)-1(r=0.9541) t = 30 DAS; D(l,t) = 79.2 (1-1.0299e �0.1671(t))(r
= 0.9950) t = 60 DAS; Y(l,t) = 4.1624+35.5700 D(l,t) �1(r = 0.9113) t = 40 DAS

TABLE 3: Predicted yield loss due to leaf folder infestation at reproductive stage (unprotected crop)

No. of 
larvae/hill 

Damage 
(%) 

60 DAS Yield 
obtained (%) 

Yield 
Loss (%) 

Damage (%) 
80 DAS Yield 
obtained (%) 

Yield loss 
(%) 

1 
2 
3 
4 
5 
6 
7 

Control 

4.80 
11.42 
16.78 
21.12 
24.64 
27.48 
29.79 
0.00 

100.00 
92.62 
89.00 
87.47 
86.63 
86.07 
85.65 
100.00 

0.00 
7.38 

11.00 
12.53 
13.37 
13.93 
14.35 
0.00 

1.78 
8.50 

13.65 
17.61 
20.65 
23.00 
24.78 
0.00 

100.00 
96.61 
93.39 
92.26 
91.61 
91.29 
90.97 
100.00 

0.00 
3.39 
6.61 
7.74 
8.39 
8.71 
9.03 
0.00 

D(l,t) = 39.6(1-1.0852e-0.2110l(t))(r=0.9931) t=60DAS, Y(l,t) = 5.8450+9.1807D (l,t)-1(r=0.8535) t = 60 DAS, D(l,t) = 30..7 (1-1.2273e �0.2644l(t))(r
= 0.9883) t =80 DAS, Y(l,t) = 5.4650+4.4286 D(l,t) �1(r = 0..8964) t = 80 DAS

TABLE 4: Predicted yield loss due to leaf folder infestation at vegetative stage (unprotected crop)

No. of 
larvae/hill 

Damage (%) 
30 DAS Yield 
obtained (%) 

Yield 
Loss (%) 

Damage 
(%) 

40 DAS Yield 
obtained (%) 

Yield loss 
(%) 

1 
2 
3 
4 
5 
6 
7 

Control 

9.43 
20.14 
28.85 
35.93 
41.68 
46.36 
50.16 
0.00 

100.00 
97.25 
92.73 
90.79 
89.66 
88.85 
88.37 

100.00 

0.00 
2.75 
7.27 
9.21 

10.34 
11.15 
11.63 
0.00 

5.28 
12.78 
18.94 
24.01 
28.17 
31.59 
34.41 
0.00 

100.00 
94.24 
88.47 
85.98 
84.58 
83.80 
83.18 
0.00 

0.00 
5.76 

11.53 
14.02 
15.42 
16.20 
16.82 
0.00 

Pandi et al.,[21] : D(l,t) = 66.7(1-0560e-0.2070l(t))(r=0.9434) t = 30DAS; Y(l,t) = 5.1080+18.3160D (l,t)-1(r=0.8671) t = 30 DAS; D(l,t) = 47.4 (1-
0810e �0.1960l(t))(r = 0.9643) t = 40 DAS; Y(l,t) = 4.9180+14.5100 D(l,t) �1(r = 0.7173) t = 40 DAS
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with later tillering/panicle initiation/heading (40-60 DAS)
and the compensation ability of the plant is reduced.
Therefore the grain crop needs insecticidal protection
at panicle initiation to heading stage alone (40 to 60
DAS). A seed crop may also warrant protection both
at early growth, tillering (25-40DAS) as well as panicle
initiation to heading stage (40-60 DAS).

7.2. Sesame pod bug (SPB)

Assessment of yield loss caused by sesame pod
bug, Elasmolobus sordidus Fab. using simulation model
was developed by Kalaiyarasan and Kailasam[12]. Es-
timation of yield loss caused by both adults and nymphs
of sesame pod bug was studied under caged condition
in the field during Kharif and Rabi on sesame cv. TMV3.
Fifteen sesame plants were selected at random and one
branch with mature pods from each plant was enclosed
in a tubular mylarfilm cage (45 6 cm). The other pests,
if any, were mechanically eliminated from the selected
branches before caging. In each cage, only 10 capsules
were retained and the rest were removed. Dried sesame
leaves were placed inside the mylarfilm cage to provide
shelter to the bugs during day time. Female bugs/nymphs
at 1,2,3,4,5,6,7,8,9,10,15,20,25 and 30 per cage were
introduced into the cages for feeding on the capsules. A
check with no bugs was also maintained. The treat-
ments were replicated thrice. The required bug popu-
lations were maintained in each treatment up to har-
vest, the infested pod, in each treatment were counted
and the severity of damages was also worked out using
a scale of 0-9 as mentioned below.

The percent damage was worked out using the for-
mula
Pod damage (%) =  Sum of score/Maximum score  No. of
pods observed 100

The data on per cent pod damage and the seed
yield obtained from each treatment was recorded and
used for estimating the pod damage, yield loss, pod
damage rate and rate of yield loss using simulation model.

7.2.1. Mitscherlich�s curve

The Mitscherlich model for pod damage is in the
form
D = A (1-e+k SPB)

Where, D = Pod damage per 10 pods measured in per cent, SPB
= Sesame pod bug levels of adults and nymphs in numbers per
10 pods, A,  and k are the parameters to be estimated.

The Mitscherlich�s model for yield loss is in the form

Y (L) = M (1-e+SPD)

Where, Y (L) = Yield loss in grams per 10 pods, M,  and  are
the parameters to be estimated

The rate of yield loss at different levels of pod dam-
age level in per cent and pod damage rate by different
levels of SPB population were estimated using the above
damage function and yield loss function.

To conclude, the assessment of yield loss caused
by SPB, three points are clear that is (1) the pod dam-
age and yield loss increased with increase in bug popu-
lation (2) the pod damage rate of an individual was higher
at low levels of bug population and lower at high levels
of bug population (3) the rate of yield loss was higher at
low level of pod damage and lower at high level of pod
damage. From this, it is imperative that control mea-
sures have to be taken up even at low levels of bug
population to avoid the yield loss.

7.3. Development of Helicoverpa armigera fore-
casting models

TABLE 5: Predicted yield loss due to leaf folder infestation at reproductive stage (protected crop)

No. of 
larvae/hill 

Damage (%) 
60 DAS Yield 
obtained (%) 

Yield 
loss (%) 

Damage 
(%) 

80 DAS Yield 
obtained (%) 

Yield Loss (%) 

1 
2 
3 
4 
5 
6 
7 

Control 

0.00 
7.93 

13.81 
18.33 
21.80 
24.46 
26.5 
0.00 

100.00 
96.65 
95.37 
94.89 
94.73 
94.57 
94.57 
100.00 

0.00 
3.35 
4.63 
5.11 
5.27 
5.43 
5.43 
0.00 

1.20 
6.52 

10.68 
13.94 
16.49 
18.49 
20.01 
0.00 

100.00 
99.84 
98.37 
98.05 
97.72 
97.72 
97.56 

100.00 

0.00 
0.16 
1.63 
1.95 
2.28 
2.28 
2.44 
0.00 

D(l,t) = 33.3(1-2910e-0.2637l(t))(r=0.9371)t = 60DAS; Y(l,t) = 5.8600+1.5240D (l,t)-1(r=0.7173)t = 60 DAS; D(l,t) = 25.7 (1-2177e �0.2447(t))(r =
0.9789) t = 80 DAS; Y(l,t) = 5.9300+1.3871 D(l,t) �1(r = 0.6400) t = 80 DAS

Surface area score Damaged (%) 
No damage - 0 

1-15 - 1 
16-30 - 3 
31-50 - 5 
51-75 - 7 
>75 - 9 
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A computer based simulation model MOTHZV has
been adopted by Trivedi et al.[30] for predicting the popu-
lation dynamics of Helicoverpa species. The model uses
early season number of eggs, larvae or adults to fore-
cast the timing and potentially damaging population.
Pheromone trap has provided the means for measuring
early season number of Helicoverpa adults. This phero-
mone trap data along with climatic variable and crop
phenology were used as inputs to the MOTHZV model
to predict the timing of future Helicoverpa generations
for a pilot test on the management of Helicoverpa spe-
cies.

The main peak was during March-April and the
second peak was during October every year. During
March-April peak, chickpea was the main crop and
during October, cotton was grown almost over entire
area. The peak population of Helicoverpa moth dur-
ing March-April and October can be predicted in ad-
vance by multiple regression models using different
weather parameters along with previous season�s popu-

lation of Helicoverpa. The population density during
March-April (P M-A) has been regressed with differ-
ent weather parameters as well as pest population den-
sity of previous five months separately and cumulatively.
It has been found to depend on total moth catch per
trap during previous October to February (Po-F), mean
monthly relative humidity recorded in the afternoon dur-
ing previous February (RHEF) and mean monthly mini-
mum temperature of previous February (T minF) as
follows:
P

M-A
 = -1032.65+2.06P

O-F
 �34.26RHE

F
 + 516.74T min 

F

(R² = 0.75)

Apart from weather parameters, the total popula-
tion cumulated from October to February is another
important parameter. The population, which uses to
undergo diapause from October due to severe winter,
is emerged again after February.

Similarly, the population density during October (Po)
can be predicted in advance with multiple regression
using weather parameters as well as pest population of
preceding months as follows:
P

o
 = -5.39+12P

M-A 
+ 1.28 P

J
-0.51

J-J
 (R² = 0.87)

P
M-A

 = Pest population density of March and April; P
J
 = Pest

Population density of June; R
J-J

 = Total amount of rainfall dur-
ing June and July

7.4. Fruit fly, Bactrocera dorsalis model

A model from methyl eugenol trap catches was

developed by Verghese[31] for fruit fly, Bactrocera dor-
salis.

The mean weekly trap catch data were subjected
to statistical analysis and it was found that the best rela-
tion existed between two consequent week catches i.e.,
the current week�s catch seemed to depend on the pre-

vious week�s catch. The best fit was obtained with a

polynomial model (order 4):
Y = (-210-8)x4 + (210-5)x³ �0.0051x² + 1.173x + 4.989.

(R² =0.74)

Here a polynomial order 4, with a coefficient of
determination of 74%, gives the second weeks (y) popu-
lation trend from the first week�s (x). It should be noted

that such models do not reflect a cause and effect rela-
tionship rather it gives a trend. Using such trends judi-
ciously will help in decision-making.

It was also found that regressing the means of trap
catches from first to seventh (x to x) week could pre-
dict the eighth weeks population with a coefficient of
determination = 61%:
Y = 11.31 + 0.14x1 -0.13x2+0.23x3-0.27x4+0.26x5-0.22x6+
0.75x7: R² = 0.61

Both the above models can be used for arriving at
a decision.
7.5. Mango shoot borer, Chlumena transversa
Walker model

Studies by Verghese and Devi[32] showed that the
number of shoots damaged in the lower canopy (x) fit-
ted to total infestation (y) on a tree by a simple linear
model. i.e., Y = 0.089 +1.8x: R²: 0.9235

The variability in the total population is explained
by the infestation in lower canopy to the tune of 92 per
cent. This is fairly high precision and helps in quick es-
timation.

7.6. Rice brown plant hopper model

Mathematical model for population growth of
buprofezin treated brown plant hopper was studied by
Salin et al.[24]. Tests were conducted in glasshouse un-
der controlled conditions of light (photoperiod of LD
13:11) and temperature (263). Laboratory reared
Nilaparvatha lugens served as the test insect. Thirty
insects each of first to fifth instars and adult stages were
exposed to 0.1, 0.2, 0.5, 1.0 and 5.0 ppm buprofezin
treated 35 days old TN-1 seedling for 2 days and trans-
ferred to untreated TN-1 plants of the same age on the
third day for further development.
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Water sprayed plants served as control. Number
of insects reaching adult stage, fecundity and per cent
hatchability of eggs were assessed. From this, potential
progeny production of the surviving individuals was
worked out for each concentration tested. The assump-
tions made for calculating population growth were: (1)
Population consists of 30 individuals of each stage in
1:1 ratio (male: female) (2) a predator feeds on 20 eggs/
day (3) a female lives for 15 days (4) life cycle com-
pletes in 32 days.

Various population growth models viz., linear qua-
dratic, exponential, negative exponential and logistic
were tried. Among the above models, the logistic model
was found to be the best fit based on R2 values (TABLE
6) and x2 -test for different concentration levels. The
logistic was
P

t
 =P

m
 (1+  e- t )-1

Where Pm = peak insect population; t = time measure in days;
 and  are the parameters to be estimated. The model was
fitted following the method of ordinary least squares (OLS).
Using the above model relative growth rate at time t, the peak
population (P 

max
) with varying initial populations subjected

to different concentrations of buprofezin treatment were simu-
lated. The relative growth rate was worked out using the for-
mula RGR =   ( e- t)-1

7.6.1. Results

The growth model tested gave a good fitting with
highly significant R2 as well as X2 - test values. Using
these models, potential growth rates of the first genera-
tion from the surviving individuals of buprofezin treat-
ment were worked out and presented in TABLE 7.
The models predicted maximum growth rates at the
beginning and as the day advanced, the growth slowed
down. On reaching maximum population, it remained
stationary.

Using the above equation peak populations attain-
able with various initial population levels were simu-
lated (TABLE 8).

Buprofezin has no lethal effect on the adult insect.

However, it strongly suppresses the oviposition and
subsequent hatching of eggs[1].

The chemical does not have any adverse effect on
the natural enemy[5]. Hence, a population containing vari-
ous stages of insect and its biotic agents, buprofezin,
has the potential of bringing down the resulting popula-
tion without adversely affecting the natural enemies.

8. Models in p[est management

8.1. PETE (Predictor extension timing estimator)

PETE was originally developed for the Michigan
fruit pest complex but has now been applied to fruit
and other crop pests in several countries[4,33].

8.2. EPIPRE(EPldemic PREdiction and PRE-
vention)

EPIPRE is for the wheat diseases[23,35,36]. In addi-
tion to providing information on Puccinia striiformis,
EPIPRE includes advice on treatments for brown rust
(Puccinia recondita), wheat powdery mildew
(Erysiphe graminis), Septoria spp. and aphids

TABLE 6: R2 values for different functions fitted

R2 
Types of function Functional forms 0.1ppm 0.2ppm 1.0ppm 0.5ppm 5.0ppm Control 

Linear Pt = P0 +1 0.6833 0.6942 0.7023 0.7212 0.7507 0.7396 
Quadratic Pt =P0+ 1t + 2t

2 0.7102 0.7342 0.6876 0.7542 0.7732 0.7032 
Exponential Pt=P0+et 0.8432 0.7966 0.8242 0.7846 0.8233 0.8073 

Negative Pt=Pm e- t 0.8461 0.8266 0.8067 0.7942 0.6887 0.8298 
Exponential  

Logistic Pt=Pm(1+ e- t )-1 0.9828 0.9826 0.9807 0.9773 0.5699 0.9849 

PT= Population at time t; P0= Initial Population; PM= Maximum Population

TABLE 7: Potential growth rates of N.lugens on different
dates

TABLE 8: Maximum attainable population of N.lugens with
different levels of initial population treated with buprofezin

Relative growth rates on 
Buprofezin 
treatments 

(ppm) 7 14 21 28 
0.10 0.2431 0.1777 0.0594 0.0116 
0.20 0.2377 0.1568 0.0498 0.0094 
0.05 0.2367 0.1475 0.0430 0.0077 
1.00 0.2341 0.1286 0.0318 0.0052 
5.00 0.1691 0.0305 0.0033 0.0003 

Control 0.2518 0.1831 0.0653 0.0124 

R2 

Initial 
Peak population attained on day 32 at 

different ppm 
Population 0.10 0.20 0.50 1.00 5.00 Control

5 375.55 298.80 263.25 208.50 58.05 466.55 
10 751.10 597.60 526.50 417.00 116.10 933.10 
15 1126.65 876.40 789.75 625.50 174.15 1399.65 
20 1502.20 1195.20 1053.00 834.00 232.20 1866.20 
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(Sitobion avenae, Metopolopium dirhodium and
Rhopalosiphium padi).

8.3. Blitcast

Blitcast is a computerized decision model based on
identification of critical periods against Phytophthora
infestans on potatoes[14]. BLITCAST was initially pro-
grammed on a large mainframe computer, but subse-
quently has become available on a microcomputer
coupted with a weather data logger. This is a self-con-
tained unit and can be placed in potato field. The model
is field specific and is used in disease forecasting.

8.4. Phytoprog

This is also computerized but it is not field specific.
The method of determining apple scab infection peri-
ods has also been programmed into computers. This
program has been incorporated with a weather data
logger into self-contained unit[10]. The simulation mod-
els predicting the timing of events in the population dy-
namic of the pest are termed phenological models. They
are also referred as day-degree model because popu-
lation development is based on the accumulation of heat.
Simulation models of the crop coupled with the pest
simulation models are known as crop-pest coupled
models. They are useful when the damage relationship
is complicated or when other factors(e.g. drought stress)
interact with pest damage[2,22].

8.5. Sucros (simple and universal crop growth simu-
lator)

Sucros is used for aphid damaging cereal crop. Such
models are necessary to enable holistic assessment of
the impact of climate change and variability in crops
and the associated pests[27].

9. Advantages of modelling

1. To improve the perception of pest problem
2. To understand the pest population dynamics.
3. To asses the risk associated with introduction of a

pest (where there is no data).
4. Integration of control methods for an economically

optimal, long term and economically sound control
strategy.

5. To understand the change of pest with respect to
climate changes.

6. To develop the effective strategies.

10. CONCLUSION

The main requirements of the model should be simple
and sustainable. Model should form an important com-
ponent of IPM decision making. Models serve as a
very useful trend indicator of either forecasting or esti-
mating insect population or infestation. These will form
a basis for IPM managers to be alert as well as take
judicious decisions for IPM. Pest resistance to pesti-
cides, residues and high cost of pesticides, emphasis
on conservation of natural enemies is of greater con-
cern. Therefore, it is mandatory requirement to develop
early warning system to provide caution to the farmers
regarding the occurrence of pest, peak activity and mi-
gration. The model will helpful in developing sustain-
able pest management system which may economically
viable and socially acceptable. Further improvements
in computer technology are likely to make the models
more users friendly.

11. REFERENCES

[1] T.Asai, O.Kajihara, S.Maekawas; Appl.Entomol.
Zool., 20, 11-117 (1985).

[2] K.J.Boote, J.W.Jones, J.W.Mishoe, R.D.Berger;
Phytopathology, 73, 1581-1587 (1983).

[3] J.A.Cheng, J.Holt; Journal of Applied Ecology, 27,
85-99 (1990).

[4] B.A.Croft, S.M.Welch; �Implementation Research

on Online Apple IPM�, In B.A.Croft, S.C.Hoyt

(eds.); Integrated Management of Insect Pests of
Pome and Stone Fruit, 340-409 (1983).

[5] E.A Heinrichs, R.P.Basilio, S.L.Valencia; Environ.
Entomol., 13, 515-521 (1984).

[6] J.Holt, R.K.Day; �Rule Based Models In Decision

Tools for Pest Management�, In G.A.Norton, J.D.

Mumford (eds.); CAB International., Wallingford,
U.K., 147-158 (1993).

[7] J.Holt, D.R.Wareing, G.A.Norton; Journal of
Applied Ecology, 24, 87-102 (1987).

[8] E.S.Hudes, C.A.Shoemaker; Enviorn.Entomol., 17,
97-108 (1988).

[9] N.R.Jeffers; �An Introduction to Systems Analy-

sis�, with Ecological Applications, Edward Arnold

Press, London, 198 (1978).
[10] A.L.Jones, S.L.Lilevik, P.D.Fisher, T.C.Stebbins;

Plant.Dis., 64, 69-72 (1980).
[11] T.H.Jones, G.A.Norton, J.D.Mumford; �Decision

Tools for pest Management�, CAB International,

Wallingford., U .K., 101-107 (1993).
[12] S.Kalaiyarasan, C.Kailasam; Indian J.Ent., 33(1),

30-34 (2005).



V.Radhakrishnan and K.Ramaraju 47

Review
RRBS, 2(1) June 2008

[13] K.L.Kraemer; �The Politics of Model Implemen-

tation�, In: J.Richardson (ed.); �Models of Reality

Shaping Thought�, Action, Lomond Press, Mt Airy,

Maryland, 131-160 (1984).
[14] R.A.Krause, L.B.Massie, R.A.Hyre; Plant Dis.Rep.,

59, 95-98 (1975).
[15] D.E.Legg; �The Relevance of Modelling in Suc-

cessful Implementation of IPM�, In O.Koul, G.S.

Dhaliwal, G.W.Cuperus, (eds.); �Integrated Pest

Management: Potential, Constraints and Challenges�
Cambridge, CABI, 39-54 (2004).

[16] T.J.Manetsch, G.L.Park; �System Analysis and Simu-

lation with Application to Economic and Social Sys-
tem�, 4th edn., Engineering Library, Michigan State
University, East Lansing, Michigan, 1, 52 (1982).

[17] L.Michaelis, M.L.Mentin; Biochcm.Z., 49, 333-369
(1913).

[18] G.G.Miller, J.L.Miller, J.Richardson; �Models of

Reality Shaping Thought and Action�, Lomond

Press, Mt Airy, Maryland, 19-49 (1984).
[19] P.H.Morgan, L.P.Mercer, L.W.Flodin; Proc.Nat.

Acad.Sci.U.S.A., 72, 4327-4331 (1975).
[20] G.A.Norton, J.Holt, J.D.Mumford; �Introduction to

the Pest Models�, In G.A.Norton, J.D.Mumford

(Eds.); �Decision tools for pest management�, CAB

International Wallingford, U.K. 43-68 (1993).
[21] V.Pandi, P.C.Sundara Babu, C.Kailasam; J.Appl.

Ent., 122, 595-599 (1998).
[22] R.Rabbinge, S.A.Ward, H.H.Van Larr (eds); �Simu-

lation and Systems Management in Crop Protection�,
Pudoc.Wageningen, The Nertherlands, (1989).

[23] F.H.Rijsdisk, R.B.Austin (ed.); �Decision making

in the Practice of Crop Protection�, Monograph

No.25, British Crop Protection Council, 65-76
(1982).

[24] K.P.Salin, C.Kailasam, M.Gopalan; Insect Science
Application, 12(4), 391-394 (1991).

[25] R.E.Shannon; �Systems Simulation: The Art and

Science�, Englewood Cliffs, NJ, Prentice Hall, 387

(1991).
[26] M.J.Smith; �Models in Ecology�, Cambridge Uni-

versity Press, London, 145 (1974).
[27] R.W.Sutherst, G.F.Maywald; Agriculture Ecology

and Environment, 13, 281-229 (1985).
[28] P.S.Teng; Zeitschrift Fiir pflanzenkrankheiten und

pflanzenschutz, 88, 49-63 (1981).
[29] P.S.Teng; The Systems Approach to Pest Manage-

ment�, P.S.Teng (ed.); �Crop Loss Assessement and

Pest Management�, American Phytopathologicl

Society Press, St Paul, Minnesota, 160-167 (1987).
[30] T.P.Trivedi, D.K.Das, A.Dhandapani, A.K.Kanujia,

D.R.Dent, M.P.Walton (eds.); �Methods in Ecologi-

cal and Agricultural Entomology�, CAB Interna-

tional, Wallingford, U.K., 387 (2002).
[31] A.Verghese; Models that Aid IPM Decisions in

Horticulture�, In R.J.Rabindra, S.Palaniswamy,

P.Karuppuchamy, K.Ramaraju, R.Philip Sridhar,
(eds.); �Ecology Based Pest Management�, TNAU

Press, 268-271 (1999).
[32] A.Verghese, S.Devi; Pest Management in Horti-

cultural Ecosystem, 4(1), 16-20 (1998).
[33] S.Welch, B.A.MCroft, M.F.Michels; Environ.

Entomol., 10, 425-32 (1981).
[34] J.C.Zadoks, R.Rabbinge; Advances in Plant Pathol-

ogy, 3, 231-244 (1985).
[35] J.C.Zadoks; EPPO Bullettin, 11, 365-369 (1981).
[36] J.C.Zadoks; K.J.Leonard, W.E.Fry (eds.); Population

Dynamics and Management�, 2 (1989).


