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1.INTRODUCTION

Mathematical modellingisthemajor tool for pre-
dicting population dynamicsof insect pests. Thechanges
in pest management objectives should befollowed by a
changein mode lingmethodol ogy. Ecosystemswithlim-
ited diversity arevulnerableto therapid col onization of
thehost by somebiol ogica organisms. Thetask of many
IPM (Integrated Pest M anagement) practicesistoin-
creasethediversity of an agroecosystem aswell asthe
pest management. Tothisend, IPM very much encom-
passes and makesuse of the cultura control tacticsand
practicesthat werea soidentified. It also embracesthe
practiceof using biopesticides®.

2. Modd

A model isarepresentation or abstraction of asys-
temin someform other thantheorigina®29,

Smithi?! indi catesthat amodel isadescription of
generd ideasthat includesaslittledetail aspossible.

Manetsch and Park[*®! indicate amodel isan ab-
stract representation of asystem that behaveslikethe
real-world systemin certain respects.

Jefferd¥ definesamode asany formal expression
of therelationship between defined symboals.

3. System

A systemisdefined as something that hasaset of
characterigiccommontodl sysemsandlackinginthings
that are not systemg*él,

Manetsch and Park® defined system as a set of
interconnected elements organized towardsagoal or
st of god sseparatefrom the environment and arede-

termined by factors compl etely independent or exter-
nal tothesystem.

Teng® indicatesthat the whole of the systemiis
morethan thesum of itsparts.

4. How can modd beuseful ?

1. Topredict the pest population will behaveinrela-
tionto someexpected changesinthe prevailing en-
vironmentd condition.

2. To seek general conclusion about how organisms
interact with each other and their environment.

3. Todecidethe pest managers how the agro-ecosys-
tem shoul d be changed to favour economy and con-
servation and not to favour pests.

4. Mode shavebeen used whenever ascientist wanted
to exploreaswell asunderstand the compl exities of
agro-ecosystem.

5. Wheredataisnot avail able, amodel can bemore
useful.

4.1. Examples

Biologicd agentsareto be sought for the control of
introduced pest. How canwe predict whichislikdyto
bethemost effective agent?

Littleinformation about new pest onthefactorsat-
tackingthelevd of attack, critical informationsshould
be collected?

5. Modelling process

Modelling process can beinvolved in two phases.
Phase| consist of conception of model, the construc-
tion of themodel and sengitivity andyss. Phasell isthe
implication of modd!.
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5.1. Phase |[®2

5.1.1. Definingand bounding thesystemthat isto
bemodelled

The objectivesof thisstep shouldincludetheiden-
tification of how resol utethemode ling processshould
bein order to addressthe stated problem, aswell as
the breadth of scalethat should be considered for de-
veloping and applying themode.

5.1.2. Evaluatingthehistorical and current knowl-
edge about the system

After thesequestionsareanswered, itisawaysgood
to conduct athorough review of theliteratureand find
out from ahistorica perspective, what isknown about
thesystem of interest.

5.1.3. Developing an initial conceptual (system)
mode

For this, we can useflow chartswith writing com-
puter programs. However, just about any system of
‘boxes’ and arrows will be sufficient to show the vari-
ablesand their relationsto oneanother.

5.1.4. Collecting dataand constructing equations
to describe the system

After constructing aconceptual diagram, collect
some datathrough either aseriesof designed experi-
mentsor observationa studiesor both. Thisisnot nec-
essarily so, asfor some problems, constructing an el-
egant word model or perhaps aknowledge-based sys-
tem may prove satisfactory.

5.1.5. Sructuringadetailed system model for com-
puter modelling

A systemissufficiently constructed for detailed
analyses, aswell assmulations, to be needed.

5.1.6. Trandlating the model into a selected lan-
guagefor computer performance

The constructed model istranslated into acom-
puter languagefor itsuse. Again, it isassumed that the
mode ismathematicd innature, isvery complex or both
and should be embedded in acomputer program for
ease of use. However, if themodel isnot of amath-
ematica nature, it may berepresented by aknowl edge-
based system. Further, if themodd isnon-mathemati-
cd andsimpleinitsdepth or breadth, adecison TABLE
or decisiontreemay be sufficient.

e ReV/ew

5.1.7. Verification

Someerrorsareobviousand harder to detect. Itis
necessary to check every part of the programme care-
fully for such errorsand to run thewhol e program on
samplevauesfor whichtheoutput isknown.

5.1.8.Validation

Onceamodel hasbeen verifieditisnecessary to
comparetheoutput from the model with independent
field measurementsof thisvariablefor arange of places
andtime.

5.1.9. Sensitivity analysis

Sensitivity analysisisto know which el ement or
parameter of the system hasthe greater impact onthe
output. A sensitive parameter isonewhich hasalarge
impact onmode output for arelatively small changein
itsownvaue. A sensitive parameter may actualy show
very littlevariaioninnature.

5.2. Phasell (Kraemer, 1984)
5.2.1.Introduction

Modd introductionrefersto aperiod during which
themode isconsidered for adoption/ during thisstep,
someearly initia testing may be conducted and there-
aults, dongwith theintroductory information that was
presented with themodel, are used to make the deci-
sion onmodel adaption.

5.2.2. Adaptation

Model adaptation refersto the period after model
introduction duringwhich broader support for themode
isdeveloped and plans are madefor instructing and
training practitionersonitsuseaswell astheinterpreta-
tion of itsoutput. During model adaptation, the model
beginsto bewidely used.

5.2.3. Incor por ation

Modd incorporationisthe step at whichthe model
isnolonger anew entity but, rather, becomesaroutine
part of the user’s operations. Research has shown that
the successful implementation of amode isinfluenced
by at least threefactors: (i) Theinherent technica char-
acteristicsof themode itsdlf (ii) Thesocia settingin
whichthemodel isused (iii) The used and impacts of
themodel asexperienced by theuser. Interestingly, it
has been hypothesized that ‘user’ will not implement a
model unlessthemodel aso servessome political in-
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6. Types of models

6.1. Statistical models

Statistical models, including variousformsof re-
gressonanaysis, offer ameansof determiningthevaue
of aresponsevariableusingasmall number of explana
tory variables. Thesesmodelsare purely based on em-
pirical observations.

6.2. Mechanistic models

M echanistic models are constructed to represent
knowledge concerning the biol ogical and ecological
processesthat underlinepest popul ation dynamics, dam-
age and control(®,

6.2.1. Analytical models

Andytica modesarethosefor whichexplicit for-
mulae arederived for predicted vauesor distributions.
They include regression and multivariate model s, ex-
perimental designs and the standard and theoretical,
datisticd distributions. Thismode providesgenerd in-
formation about the system by describing the charac-
teristicsinahandful of relationship and parameterg™.
Andytical model shave been usedin devel oping host-
parasitoid rel ationship for sustainabl e biocontrol strat-
egiesand for determining popul ation changes. Anal yti-
cal models have been used as atool for developing
pest management principlesand ecol ogical theory.

6.2.2. Simulation models

Simulationistheprocessof designingamodel of a
red system and conducting experimentswiththemode
for the purposes of understanding the behaviour of the
system or of evaluating various strategiesfor the op-
eration of thesystem®, Simulationmodellingisusedin
pest management mainly inrelation to the population
dynamicsof crop, pestsand their natural enemies. In
pest management, decision-making s mulation models
areusedfor forecasting of pest population changesand
for testing thewiderange of management optionsof the
modelled pest population. Anexampleisthesmulation
model of ricebrown plant hopper (BPH), used to ac-
count for theroleof different mortality agentsin BPH
popul ation dynamics, and to investigate the causes of
BPH outbreaksintropical rice systemd?. It hasalso
been used to determinethe best timefor application of
insecticidesfor BPH control based on reduction peak

density of the pest®.
6.2.3. Rule-based models

Rule-based modelingisquditatively equivdent to
conventiona simulation modelling®. Without theneed
to represent rel ati onshi ps between components of sys-
tem using mathematical equations, arule-based ap-
proach providesameans by which subjective knowl-
edge about asystem can be used to build models. In
rule-based model's, subjective knowledge about asys-
tem can be used to build amodel. Any computer lan-
guage, whichincorporateslogica operationsand if-then
statements and capacity for interaction can beused to
build amode. Thisincludestheconventiona program-
ming languages (Basic, Pascal, C etc), database
(dBASE, FoxPro etc.), spreadsheets (Supercalc, Lo-
tus 123, etc.,) and some expert system shells.

6.2.4. Spreadsheet based models

Spreadsheets arewidely used for the storage and
management of biological data. In pest management,
spreadsheet models areideal for quick, exploratory
modelsto get afeel for therange of likely outcomes
from possiblecontrol options. They areparticularly use-
ful in aworkshop setting where ideas can be tested
immediatel y on aspreadsheet model . A smple spread-
sheet model can be designed and built by participants
during the course of afew hours during aworkshop
session. Theresult of asmplemode canthenfromthe
basisfor further discussion, analysisand experimenta-
tion. Examples of the spreadsheet softwareare LO-
TUS, Quattro Pro and Excdl, etc.

6.2.5. Inferential modd

They have been proposed for modelling develop-
ment of aninsect population that passesthrough ase-
riesof discretedevelopmental stages. Theredationship
between an insect, itshosts and predatorsis often de-
pendent upon there ative phenol ogies of each othertd.
Understanding insect host phenol ogy isuseful in under-
standing ecol ogical interactionsaswell asin managing
insect populations. Control of theinsect population can
be made much moreeffective, if control measurescan
be timed to coincide with the occurrence of the most
susceptiblelifestage of theinsect. Thistechnique has
been successfully used to describe the phenol ogy of
post-diapause of spruce budworm, Choristoneura
fumiferana (Clemens) larvae. Phenologicd dataonthe
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budworm arecollected annualy and theinformationis
used to determinethetimings of insecticidal sprays®.

6.3. Optimization models

Optimization techniques, asname suggests, arepri-
maxrily concerned with prescriptive decision problems
in pest management. In Optimization decisionscan be
made for the whole of growing season at once or
stepwi sewithin each optimization period®¥. Smulaion
and optimization are complementary tool sin pest man-
agement.

7. Utility of modellingin insect pest management
7.1. Riceleaf folder

Prediction of leaf folder damageandyieldlossin
susceptiblericecultivar IR 50 at different larva popu-
lationsand crop periodsunder naturd conditionswere
studied by Pandi et a.BY intwo field experimentsdur-
ing Kharif season.

7.1.1. Damage and yield losswith ensured infes-
tation of leaf folder without plant protection

Second instar larvae (3-4 day ol d) wererel eased
at 30, 40, 60 and 80 days after sowing (DAS). The
treatment variants were oneto seven larvae per hill,
withacontrol. Ten hillsweremaintained for each treat-
ment. Thetreatmentswerereplicated threetimes. The
plantswereunprotected after therd easeof larvae, which
allowed themto multiply freely. Thedamagewas as-
sessed 15 days after larval introduction. In order to
assess the cumul ative damage, the subsequent counts
weretaken on the same plants, which were marked at
thefirst count. Damage assessment was carried out at
20day intervals, starting 15 daysafter larval release.
i.e., countsweremade at 45, 60, 80 and 100 DASfor
infestation at 30 DAS. For larval introduction at 40
DAS, assessment wasmadeon 55, 80 and 100 DAS.
The countsweremadeat 75 and 100 DASfor infesta-
tion that wasintroduced at 60 DA Sand for the 80 day
larva introduction only onecount wastakenat 95 DAS.
Finaly, thehillswere harvested separately and thegrain
yield was assessed. Theyield lossat different larval
populations and crop periods was assessed based on
uninfested control yield (TABLE 1).

7.1.2. Damage and yield losswith ensured infes-
tation of leaf folder with plant protection

Thedesign and procedurefor ensuring infestation

e RBY/CW

of thehillsweresmilar tothat described intheleaf fol der
without plant protection experiment. One spray using
monocrotophos 36 WSC was given, based on the eco-
nomicthreshold (ET). TheET a thevegetativestageis
10 per cent and at the reproductive stage it is 5 per
cent of leaf damage. Thedamageand yidld assessment
were carried out inasimilar manner to that of theun-
protected group.

7.1.3. Mathematical model
7.1.3.1. Prediction of damage

TheMitscherlich’s model was used for the predic-
tion of damage, because it was found to be the best,
based on correl ation coefficient and goodness of fitl*®
andthismode! isof theform:

D (I,t)=D,, (1-acfa)

Where, D (1,t) = leaf damage at various larval loads and crop
Periods; I(t) = larval at thet"crop period; D,, = maximum dam-
ageat given larval loads and crop periods; o and 3 are param-
eters to be estimated.

7.1.3.2. Prediction of yield

Therectangular hyberbolamodel wasused for the
prediction of yield obtained, becauseit wasfound to
bethe best, based on R? value and the prediction abil-
ity of theyield dueto damage*” and thismode! isof the
form:

Y (I,t)=a+pD (I, 1)
Where, y (1,t) = yield obtained after the infestation of various
larval loads at different crop periods; D (1,t) = leaf damage at

different larval loadsand crop periods; a. and 3 are parameters
to be estimated. The above models were estimated using the

non-linear methods of ordinary least squares (OLS).
7.1.4. Results
7.1.4.1.Yield loss

The damage on 40 DAS contributed for greater
fdlinyiedleves, theinfestationat 30, 60 and 80 DAS
contributed for lesser yield levels. However, thefdl in
yieldincreased withincreasinglarva population.

7.1.4.2. Unprotected crop

TABLE 1: Experimental design for damageand yidd assess-
ment with plant protection

Crop age at Dayson which ETL Dayson which spray

infestation (DAS) reached (DAYS) given (DAS)
30 35 35
40 46 46
60 65 65
80 85 85

Pandi et al.,?4
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TABLE 2:. Predicted yield lossduetoleaf folder infestation at vegetativestage (unprotected crop)

No. of Damage (%) 30 DASYied Yield Damage (%) 40 DASYied Yield loss
larvae/hill obtained (%) loss (%) obtained (%) (%)

1 20.13 96.88 3.12 10.18 94.33 5.67

2 32.88 84.82 15.18 20.30 72.29 27.71

3 43.15 80.22 19.78 29.79 66.00 34.00

4 51.42 77.91 22.09 37.39 62.93 37.07

5 58.09 76.56 23.44 43.83 61.21 38.79

6 63.45 75.61 24.39 49.27 60.10 39.90

7 67.78 74.93 25.07 53.88 59.36 40.64
Control 0.00 100.00 0.00 0.00 100.00 0.00

D(I,t) = 85.7(1-0.9498e02120))(r=0.9850) t=30DAS; Y (I,t) = 4.8500+47.2600D (I,t)*(r=0.9541) t = 30 DAS; D(l,t) = 79.2 (1-1.0299e -*1e71)(y
= 0.9950) t = 60 DAS; Y(l,t) = 4.1624+35.5700 D(l,t) *(r = 0.9113) t = 40 DAS

TABLE 3: Predicted yield lossduetoleaf folder infestation at reproductive stage (unprotected crop)

No. of Damage 60 DASYield Yield Damage (%) 80 DASYield Yield loss
larvae/hill (%) obtained (%) Loss (%) obtained (%) (%)
1 4.80 100.00 0.00 1.78 100.00 0.00
2 11.42 92.62 7.38 8.50 96.61 3.39
3 16.78 89.00 11.00 13.65 93.39 6.61
4 21.12 87.47 12.53 17.61 92.26 7.74
5 24.64 86.63 13.37 20.65 91.61 8.39
6 27.48 86.07 13.93 23.00 91.29 8.71
7 29.79 85.65 14.35 24.78 90.97 9.03
Control 0.00 100.00 0.00 0.00 100.00 0.00

D(I,t) = 39.6(1-1.0852e°210)(r=0.9931) t=60DAS, Y (I,{) = 5.8450+9.1807D (I,1)*(r=0.8535) t = 60 DAS, D(I,t) = 30..7 (1-1.2273e 26410)(y
= 0.9883) t =80 DAS, Y(I,t) = 5.4650+4.4286 D(I,t) -'(r = 0..8964) t = 80 DAS

TABLE 4: Predicted yield lossdueto leaf folder infestation at vegetativestage (unprotected crop)

No. of Damage (%) 30DASYield Yield Damage 40 DASYield Yield loss
larvae/hill obtained (%) Loss (%) (%) obtained (%) (%)

1 9.43 100.00 0.00 5.28 100.00 0.00

2 20.14 97.25 2.75 12.78 94.24 5.76

3 28.85 92.73 7.27 18.94 88.47 11.53

4 35.93 90.79 9.21 2401 85.98 14.02

5 41.68 89.66 10.34 28.17 84.58 15.42

6 46.36 88.85 11.15 31.59 83.80 16.20

7 50.16 88.37 11.63 34.41 83.18 16.82
Control 0.00 100.00 0.00 0.00 0.00 0.00

Pandi et al.21: D(I,t) = 66.7(1-0560e°2790)(r=0.9434) t = 30DAS; Y(I,t) = 5.1080+18.3160D (I,t)(r=0.8671) t = 30 DAS; D(,) = 47.4 (1-
0810e 1*0)(r = 0.9643) t = 40 DAS; Y(I,t) = 4.9180+14.5100 D(I,t) -'(r = 0.7173)t = 40 DAS

Theyieldlosswas3.12to 25.07 per centinthe 30
day old crop and between 5.67 and 40.64 per cent in
40day old cropfor thelarva populationsranging from
oneto seven per hill (TABLE 2). It was found that,
although the damage suffered by the 40 day old crop
wascompardively lessthan that of the 30 day old crop,
the yield suffered by it was nearly twice that of the
younger crop. Older crops of 60 and 80 DAS were
found to have less damage than the 40 day old crop.
Theyiddlosswas7.38to 14.35 per cent inthe 60 day
old crop and 3.39 to 9.03 per cent in the 80 day old
crop for damageandyiedlossinricedueto leaf folder
(TABLED3).

7.1.4.3. Protected crop

The protection of the crop with monocrotophos 36
WSC avoided moreyieldloss. Theyiddlosssuffered
by the 30 day old was 0.00 per cent for onelarvaand
11.63 per cent for seven larvae (TABLE 4). Theyield
loss suffered by 40 day old crop was between zero
and 16.82 per cent, which was much less compared
with the unprotected crop of the sameage. Theyield
losswasonly 5.43 per cent in the 60 and 2.44 per cent
inthe 80 daysinfested crop for the highest larval load
of seven per hill (TABLEDS).

The damage caused on the 40 day infested crop
accounted for more yield loss. It has been reported
that theflag leaf isthe main source of photosynthates
for theformation of grain and damageto thisleaf might
result in agreater yield loss. The crop may coincide
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TABLES: Predicted yield lossduetoleaf folder infestation at reproductivestage (protected crop)

No. of 60 DASYield Yield Damage 80 DASYield .
larvaghill  PAMae(P)  hicined (%) loss(%) (%) Obtained (%) ' '€ldL0ss(%)
1 0.00 100.00 0.00 120 100.00 0.00
> 7.93 96.65 3.35 6.52 90.84 0.16
3 13.81 95.37 463 10.68 98.37 163
4 18.33 94.89 5.11 13.94 98.05 195
5 21.80 94.73 5.27 16.49 97.72 228
6 24.46 94.57 5.43 18.49 97.72 228
7 26.5 94.57 5.43 20.01 97.56 244
Control 0.00 100.00 0.00 0.00 100.00 0.00

D(,t) = 33.3(1-2910e°2570)(r=0.9371)t = 60DAS; Y(I,t) = 5.8600+1.5240D (I,t)*(r=0.7173)t = 60 DAS; D(I,t) = 25.7 (1-2177e -2470)(r =
0.9789) t = 80 DAS; Y(I,t) = 5.9300+1.3871 D(,t) -*(r = 0.6400)t = 80 DAS

withlater tillering/panicleinitiation/heading (40-60 DAS)
and the compensation ability of the plant isreduced.
Thereforethegrain crop needsinsecticidal protection
at panicleinitiation to heading stage alone (40to 60
DAYS). A seed crop may a so warrant protection both
at early growth, tillering (25-40DAS) aswell aspanicle
initiation to heading stage (40-60 DAS).

7.2. Sesamepod bug (SPB)

Assessment of yield loss caused by sesame pod
bug, Elasmol obus sordidusFab. using S mulation model
was devel oped by Kadalyarasan and Kailasam2, Es-
timation of yieldloss caused by both adultsand nymphs
of sesame pod bug was studied under caged condition
inthefield during Kharif and Rabi onsesamecv. TMV 3.
Fifteen sesame plantswere selected a random and one
branch with mature podsfrom each plant wasenclosed
inatubular mylarfilm cage (45x 6 cm). Theother pests,
if any, weremechanically eliminated from the selected
branches before caging. In each cage, only 10 capsules
wereretained and therest wereremoved. Dried sesame
leaveswere placed insgdethemylarfilm cageto provide
shdlter tothebugsduring day time. Femaebugs/nymphs
a1,2,34,5,6,7,8,9,10,15,20,25 and 30 per cagewere
introduced into the cagesfor feeding onthecapsules. A
check with no bugswas aso maintained. Thetreat-
mentswerereplicated thrice. Therequired bug popu-
lations were maintained in each treatment up to har-
vest, theinfested pod, in each trestment were counted
and the severity of damageswas ad soworked out using
asca e of 0-9 asmentioned bel ow.

Surface area score

No damage
1-15
16-30
31-50
51-75
>75

Damaged (%)

O~NOTWwWEk o

The percent damage wasworked out using thefor-
mua
Pod damage (%) = Sum of scor e/M aximum scor e x No. of
podsobserved x100

The data on per cent pod damage and the seed
yield obtained from each treatment was recorded and
used for estimating the pod damage, yield loss, pod
damageraeandrateof yiddlossusngsamulaionmodd.

7.2.1. Mitscherlich’s curve

TheMitscherlichmode for pod damageisinthe
form
D=A (1_eﬁ+k ¥8)

Where, D = Pod damage per 10 pods measured in per cent, SPB
= Sesame pod bug levels of adults and nymphsin numbers per
10 pods, A, B and k are the parameters to be estimated.

TheMitscherlich’s model for yield loss is in the form
Y (L)=M (1-ex’SP)

Where, Y (L) =Yieldlossingramsper 10 pods, M, o. and 6 are
the parameters to be estimated

Therateof yiddlossat different levelsof pod dam-
agelevd inper cent and pod damagerate by different
levelsof SPB popul ation wereestimated usingtheabove
damagefunctionandyiddlossfunction.

To conclude, the assessment of yield | oss caused
by SPB, three pointsare clear that is (1) the pod dam-
ageandyiddlossincreased with increasein bug popu-
lation (2) thepod damagerateof anindividuad washigher
at low levelsof bug population and lower at highlevels
of bug population (3) therateof yield losswashigher at
low level of pod damageand lower at high level of pod
damage. Fromthis, it isimperativethat control mea
sures have to be taken up even at low levels of bug
populationto avoid theyield loss.

7.3. Development of Helicoverpa armigera fore-
casting models
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A computer based s mulationmode MOTHZV has
been adopted by Trivedi et d.* for predicting the popu-
|ation dynamicsof Helicoverpaspecies. Themodd uses
early season number of eggs, larvae or adultsto fore-
cast thetiming and potentially damaging popul ation.
Pheromonetrap hasprovided themeansfor measuring
early season number of Helicoverpaadults. Thisphero-
monetrap dataa ong with climatic variableand crop
phenol ogy were used asinputstothe MOTHZV mode
to predict thetiming of future Helicover pa generations
for apilot test onthe management of Helicoverpa spe-
cies.

The main peak was during March-April and the
second peak was during October every year. During
March-April peak, chickpeawas the main crop and
during October, cotton was grown almost over entire
area. The peak population of Helicover pamoth dur-
ing March-April and October can be predicted in ad-
vance by multipleregression models using different
weether parametersa ong with previous season’s popu-
lation of Helicoverpa. The population density during
March-April (PM-A) hasbeen regressed with differ-
ent weather parametersaswell aspest population den-
gty of previousfivemonthsseparately and cumul atively.
It has been found to depend on total moth catch per
trap during previous October to February (Po-F), mean
monthly rel ative humidity recorded intheafternoon dur-
ing previousFebruary (RHEF) and mean monthly mini-
mum temperature of previous February (T minF) as

follows
P, = -1032.65+2.06P_ . —34.26RHE_ + 516.74T min _
(R2=0.75)

Apart from weather parameters, thetotal popul a-
tion cumulated from October to February isanother
important parameter. The population, which usesto
undergo diapause from October dueto severewinter,
isemerged again after February.

Similarly, the populaion density during October (Po)
can be predicted in advancewith multipleregression
using weether parametersaswel | as pest population of
preceding monthsasfollows:

P =-539+12P, ,+1.28P-051  (R*=0.87)

P,,.. = Pest population density of March and April; P, = Pest
Population density of June; R, ;= Total amount of rainfall dur-
ing June and July

7.4. Fruit fly, Bactrocera dorsalismodel
A model from methyl eugenol trap catches was

developed by Verghesg® for fruit fly, Bactrocerador-
slis.

The mean weekly trap catch datawere subjected
togatistical anadysisand it wasfound that thebest rela-
tion existed between two consequent week catchesi.e.,
thecurrent week’s catch seemed to depend on the pre-
viousweek’s catch. The best fit was obtained with a
polynomia model (order 4):

Y = (-2x109)x4 + (2x10°)x® —0.0051x> + 1.173x + 4.989.
(R2=0.74)

Here apolynomial order 4, with a coefficient of
determination of 74%, givesthe second weeks(y) popu-
lation trend fromthefirst week’s (x). It should be noted
that such modelsdo not reflect acauseand effect rla
tionshiprather it givesatrend. Using such trendsjudi-
cioudy will hdpin decision-making.

It wasa so found that regressing themeansof trap
catchesfromfirst to seventh (x to x) week could pre-
dict the eighth weeks population with acoefficient of
determination = 61%:

Y = 11.31 + 0.14x, -0.13x,+0.23x,-0.27x,+0.26x_-0.22x +
0.75x.: R?=0.61

Both the above model s can be used for arriving at
adecison.

7.5. Mango shoot borer, Chlumena transversa
Walker model

Studies by Verghese and Devi® showed that the
number of shootsdamaged inthelower canopy (X) fit-
ted tototal infestation (y) on atreeby asimplelinear
model.i.e,Y =0.089 +1.8x: R*: 0.9235

Thevariability inthetota populationisexplained
by theinfestation inlower canopy to thetune of 92 per
cent. Thisisfairly high precision and helpsin quick es-
timation.

7.6. Ricebrown plant hopper model

Mathematical model for population growth of
buprofezin treated brown plant hopper was studied by
Sdinet d .. Testswere conducted in glasshouse un-
der controlled conditionsof light (photoperiod of LD
13:11) and temperature (26+3). Laboratory reared
Nilaparvatha lugens served asthetest insect. Thirty
insectseach of first tofifth ingarsand adult stageswere
exposedto 0.1, 0.2, 0.5, 1.0 and 5.0 ppm buprofezin
treated 35 daysold TN-1 seedling for 2 daysand trans-
ferred to untreated TN-1 plantsof the sameageonthe
third day for further devel opment.
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RZ
Types of function Functional forms  0.1ppm  0.2ppm 1.0ppm 0.5ppm 5.0ppm Control
Linear P, = Py +f; 0.6833 0.6942 0.7023 0.7212 0.7507 0.7396
Quadratic P, =Po+ Bat+ P 0.7102 0.7342 0.6876 0.7542 0.7732 0.7032
Exponential P=Pyt+e 0.8432 0.7966 0.8242 0.7846 0.8233 0.8073
Negative P=P,e"! 0.8461 0.8266 0.8067 0.7942 0.6887 0.8298
Exl_pggri‘;”it(':al P=P,(1+ ae®')? 09828 09826  0.9807 09773 05699  0.9849

P.= Population at time t; P,= Initial Population; P,,= Maximum Population

TABLE 7: Potential growth ratesof N.lugenson different

Water sprayed plants served as control. Number
of insectsreaching adult stage, fecundity and per cent
hatchability of eggswereassessed. Fromthis, potential
progeny production of the surviving individual swas
worked out for each concentrationtested. The assump-
tionsmadefor ca culating population growth were: (1)
Population consistsof 30individualsof each stagein
1:1ratio(mae female) (2) apredator feedson 20 eggy
day (3) afemalelivesfor 15 days(4) life cycle com-
pletesin 32 days.

Various popul ation growth modelsviz, linear qua-
dratic, exponential, negative exponentia and logistic
weretried. Among the above modd s, thelogistic mode
wasfound to bethebest fit based on R?values(TABLE
6) and x? -test for different concentration levels. The
logisticwas
P=P (+aep')*

Where Pm = peak insect population; t = time measurein days;
o and B are the parameters to be estimated. The model was
fitted following the method of ordinary least squares (OLS).
Using the above model relative growth rate at timet, the peak
population (P ) with varying initial populations subjected
to different concentrations of buprofezin treatment were simu-
lated. The relative growth rate was worked out using the for-

mulaRGR=a B (aeB?)?
7.6.1. Results

Thegrowth model tested gaveagood fitting with
highly significant R? aswell as X? - test values. Using
these mode s, potentia growth ratesof thefirst genera-
tion fromthe survivingindividuals of buprofezin tregt-
ment were worked out and presented in TABLE 7.
The models predicted maximum growth rates at the
beginning and asthe day advanced, the growth s owed
down. On reaching maximum popul ation, it remained
dationary.

Using theabove equation peak popul ations attain-
ablewithvariousinitial population levelsweresimu-
lated (TABLE 8).

Buprofezin hasnoletha effect ontheadult insect.

dates
Buprofezin Relative growth rates on
treatments
(ppm) 7 14 21 28
0.10 0.2431 0.1777 0.0594 0.0116
0.20 0.2377 0.1568 0.0498 0.0094
0.05 0.2367 0.1475 0.0430 0.0077
1.00 0.2341 0.1286 0.0318 0.0052
5.00 0.1691 0.0305 0.0033 0.0003
Control 0.2518 0.1831 0.0653 0.0124

TABLE 8: Maximum attainablepopulation of N.lugenswith
different levelsof initial population treated with buprofezin

R2

Initial

Peak population attained on day 32 at
different ppm

Population 0.10

0.20

0.50

1.00 5.00 Control

5 375.55 298.80 263.25 208.50 58.05 466.55
10 751.10 597.60 526.50 417.00116.10 933.10
15 1126.65 876.40 789.75 625.50174.15 1399.65
20 1502.201195.20 1053.00 834.00 232.20 1866.20

However, it strongly suppressesthe oviposition and
subsequent hatching of eggs™.

Thechemical doesnot have any adverseeffect on
thenatural enemy™. Hence, apopul ation containing vari-
ous stages of insect and its biotic agents, buprofezin,
hasthe potentia of bringing down theresulting popula
tion without adversdly affecting the natural enemies.

8. Modelsin p[est management
8.1. PETE (Predictor extension timing estimator)

PETE wasoriginaly developed for theMichigan
fruit pest complex but has now been applied to fruit
and other crop pestsin several countries*®.

8.2. EPIPRE(EPIdemic PREdiction and PRE-
vention)

EPIPRE isfor thewheat diseased?%%!, |n addi-
tionto providing information on Puccinia striiformis,
EPIPRE includesadvice on trestmentsfor brown rust
(Puccinia recondita), wheat powdery mildew
(Erysiphe graminis), Septoria spp. and aphids
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(Sitobion avenae, Metopolopium dirhodium and
Rhopal osi phium padi).

8.3. Blitcast

Blitcast isacomputerized decision model based on
identification of critical periodsagainst Phytophthora
infestanson potatoes'¥. BLITCAST wasinitidly pro-
grammed on alarge mainframe computer, but subse-
guently has become available on a microcomputer
coupted with aweather datalogger. Thisisaself-con-
tained unit and can be placed in potato field. Themodel
isfield specificandisusedin diseaseforecasting.

8.4. Phytoprog

Thisisaso computerized but itisnot field specific.
The method of determining appl e scab infection peri-
ods has also been programmed into computers. This
program has been incorporated with aweather data
logger into sl f-contained unit™@. Thesimulation mod-
el spredicting thetiming of eventsinthe population dy-
namic of the pest aretermed phenologica models. They
arealso referred as day-degree model because popu-
lation devel opment i sbased on theaccumul aion of hest.
Simul ation model s of the crop coupled with the pest
simulation models are known as crop-pest coupled
models. They are useful whenthe damagerelationship
iscomplicated or when other factorg(e.g. drought stress)
interact with pest damagei?#.

8.5. Sucros(smpleand universal crop growth smu-
lator)

Sucrosisused for gphid damaging cered crop. Such
model sare necessary to enabl e holistic assessment of
theimpact of climate change and variability in crops
and the associated pestg?.

9. Advantagesof modelling

1. Toimprovethe perception of pest problem

2. Tounderstand the pest population dynamics.

3. Toassestherisk associated with introduction of a
pest (wherethereisno data).

4. Integration of control methodsfor an economically
optima, long term and economically sound control
dtrategy.

5. To understand the change of pest with respect to
climatechanges.

6. Todeveloptheeffectivestrategies.

10. CONCLUSION

Themainrequirementsof themode shouldbesmple
and sustainable. Modd should formanimportant com-
ponent of IPM decision making. Models serve as a
very useful trend indicator of either forecasting or esti-
mating insect popul ation or infestation. Thesewill form
abasisfor IPM managersto be alert aswell astake
judiciousdecisionsfor IPM. Pest resistanceto pesti-
cides, residuesand high cost of pesticides, emphasis
on conservation of natural enemiesisof greater con-
cern. Therefore, itismandatory requirement to develop
early warning system to provide cautionto thefarmers
regarding the occurrence of pest, peak activity and mi-
gration. Themode will helpful in developing sustain-
ablepest management system which may economically
viableand socially acceptable. Further improvements
incomputer technology arelikely to makethe models
moreusersfriendly.
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