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INTRODUCTION

Most of the published work on heat transfer during
welding processes considers that the heat source is con-
centrated in a very small volume of the material. After
such consideration, analytical solutions are obtained
assuming a point, a line or a plane heat source, as those
proposed by Rosenthal[1]. However, measurements of
temperatures in the fusion and heat affected zones dif-
fer significantly from the values provided by those solu-
tions, since the singularity located at the source origin
results in infinite temperature levels. These concentrated
source models present higher accuracy in regions where

Integral solution;
Welding process;

Gaussian heat source.

KEYWORDSABSTRACT

In arc welding process, the interesting regions for heat transfer analysis are
the fusion zone (FZ) and the heat affected zone (HAZ), where high tempera-
tures are reached. These high temperature levels cause phase transforma-
tions and alterations in the mechanical properties of the welded metal. In the
present work, a comparison is made between thermal cycles obtained from
analytical models base on the integral method with Gaussian (distributed)
heat sources and other results base on the concentrated heat source model.
Though the integral method is approximate methods, it have proven to
give simple solutions with acceptable accuracy for transient heat transfer.
The comparison shows that the thermal cycles obtained from the distrib-
uted heat source model are more reliable than those obtained from the con-
centrated heat source model. Also results show that the use of distributed
heat source prevents infinite temperatures values near the fusion zone.
 2010 Trade Science Inc. - INDIA

the temperature does not exceed twenty percent of the
material melting point[2].

In order to avoid the occurrence of unrealistic val-
ues at the center and in the vicinity of the fusion zone
(FZ), it is more adequate to consider a distributed heat
source in the model development. In reality, the heat
source is distributed in a finite region of the material, a
fact most relevant to the assessment of temperatures
near the FZ. There are several models for heat source
distribution. The Gaussian distribution firstly suggested
by Pavelic et al.[3], is the most used. Although solutions
considering distributed heat sources can be reached both
analytically and numerically, there is an increasing ten-

Full Paper
MSAIJ, 6(1), 2010 [62-67]

An Indian JournalTrade Science Inc.

Volume 6 Issue 1March 2010

Materials ScienceMaterials Science
ISSN : 0974 - 7486

id4583703 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

mailto:mizadpanah@yahoo.com


M.R.Izadpanah et al. 63

Full Paper
MSAIJ, 6(1) March 2010

An Indian Journal
Materials ScienceMaterials Science

The formulation of the problem to the first weld
pass is made up by the one-dimensional transient heat
conduction equation, and its boundary and initial con-
ditions. It is similar to the formulation of the point heat
source problem. In terms of è (è = T-To), it is:
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To take into account the distribution of the heat source,

Solve of the formulation

Initially, it is assumed that the domain is at constant
temperature; that is,
(y,0) = 0 in 0 < y <  (6)

For a semi-infinite domain, the necessary second bound-
ary condition for both clamped temperature and heat
flux problems is a constant temperature when y 

Namely,

(,t) = 0 (7)

We are interested here by the solution for the disturbed
temperature field, which is limited by the thermal layer
(t) inferior to the length of the domain. Now the con-
dition (3) can be rewritten as,

(y,t) = 0 at y = (t) (8)

By integrating (1) with respect to y over the thermal
layer (t), one obtains the Heat Integral equation of the
system,
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For right side of equation (9) can write:
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dency to the use of numerical methods.
Izadpanah et al.[4] developed the mathematical

model to analyze the heat transfer characteristics in arc
welding Process. They used the similarity solution to
model the welding process using thin plates.

The present work, which is an extension of previ-
ous work done by authors, presents a new analytical
solution base on the integral method to estimate tem-
perature fields in welding, using Gaussian heat sources.
A case study, using practical material and parameters,
is also simulated to show the main characteristics of the
thermal cycles furnished by the developed model. A
comparison with the results provided by the concen-
trated source corresponding solution is carried out.

ANALYTICAL DEVELOPMENT

In the one-dimensional model, the heat flux is con-
sidered to occur only in the y direction, as shown in the
coordinate system of Figure 1. The following assump-
tions are made: the heat source moves at a sufficiently
high speed (to neglect heat flux in the x direction), and
each weld pass fulfills the whole etched groove (no heat
flux in the z direction).

Figure 1 : Coordinate system used in the model.

please refer to Figure 2, where a source with normal or
Gaussian distribution is instantaneously applied at t = 0
to the surface of a plate. The center C of the source
coincides with origin O of the coordinate system xyz.
The total power of the source is given by:





 dy)y(qQ s (5)

Figure 2 : Gaussian heat source
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Note that in our system 
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Thus using the equations (10) and (11) the equation (9)
is reduced to:
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We have used a temperature profile è = a + by + cy2

where the coefficients a, b, and c are functions of (t).
To find the coefficients we need one additional bound-
ary condition. For this, already used to construct the
Heat Integral equation is straightforward and comes
directly from the definition of the thermal layer,
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Using the boundary conditions (2), (4), (8) and (13),
we can formulate a solution of as a function of (t).
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By substituting equation (14) into the Heat-Integral equa-
tion (12), we obtain the thermal layer as a function of
time, subjected to the initial condition (6),
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By substituting equation (15) into equation (14) can
write:
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The gaussian distribution

In the one-dimensional case, the Gaussian distribu-
tion of the heat source along the y direction occurs si-
multaneously at all points of the x direction of welding.
The power q

s
(y) may be expressed by:

q
s
(y) = q

max
 exp(-By2) (17)

Where:
q

max
 = q

s
 maximum value (W/m)

B = coefficient of arc concentration (1/m)
Coefficient B is determined considering a distance y

b
 in

Equation (17), which corresponds to the distance from
the origin to the location where the power is reduced to
five percent of its maximum value (Figure 2). Thus,
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When y
b
 is large, q

s
(y) decreases slowly with y. Substi-

tuting Equation (18) in Equation (17) and then in Equa-
tion (5), and integrating this equation between -y

b
 and

y
b
 limits, one obtains:
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Equation (17) may then be written as:
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The diffusion process of an instantaneous Gaussian heat
source applied to the surface of the material may be
obtained by the source method. Let the y coordinate,
along which the heat source varies, be divided in small
elements dy�. The heat dQ = q

s
(y�)dy� is supplied to

the element dy� at t = 0, and may be regarded as an
instantaneous point heat source. According to Equa-
tion (16), the diffusion process to an instantaneous heat
source is:



































































1
t12

y
2

t12

y

t12c

)'dy)('y(q

8
3

1)
t12

y
(2)

t12

y
(

t12c

dQ
8
3

)t,y(d

2

s

2

(21)

Substituting Equation (20) in Equation (21), and also
By the superposition principle, the temperature change
in the y point may be obtained by summing the contri-
butions of all instantaneous concentrated sources dQ,
acting along the y coordinate of the material, between -
y

b
 and y

b
 points:
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Solving the integral and rearranging the solution, one
obtains:
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The general solution to n passes, in terms of T, is given
by:

(24)

MODEL EVALUATION

A comparison between concentrated and distrib-
uted heat source models was made through simulation
of thermal cycles for three weld passes. Equation (23)
was used to calculate the temperatures near the fusion
zone, when a Gaussian distributed heat sources is ap-
plied. The multipass model with concentrated heat
source is given by Eq. (24). In this case, the variable
q

s
(y) does not have a distribution, and it is calculated

by:

vz
VI

Qqs


 (25)

The waiting time (time between passes) used corre-
sponds to 80 seconds, and the welding process was
simulated during a total time of 240 seconds. The am-
bient temperature is 25oC. The error function in Eq.
(24) was evaluated using a polynomial approximation.
The properties and parameters used in the simulation
are described below.

Material

The evaluation of the proposed model was made
considering butt welding of high strength low alloy steel
(HSLA) plates, with dimensions 0.13 x 0.10 x 0.25 m
(thickness x length bead x width). TABLE 1 shows the
physical properties used in the simulation. It is known
that the physical properties of the metal change with
temperature. However, this variation in the analytical

models results in a non-linear equation, and it is not
possible to obtain the solution in closed form. Then, the
physical properties are usually taken at a specific tem-
perature, for example, at half the melting point of the
material. In this work, they were calculated at 800oC.
The values refer to low carbon steels, but they can be
used for HSLA steel, as suggested by Hanz et al.[5]

Welding parameters

In order to fulfill the groove, in butt welding, the
usual practice is to increase the heat input from one
pass to the next. In the present simulation of a real case,
the increase of heat input is obtained by increasing the
welding current, the other parameters in Eq. (25) re-
maining unaltered. However, the current increase causes
efficiency to decrease. Then, a different value of effi-
ciency must be used in each pass. The choices of these
values were based on the efficiency range for the Gas
Metal Arc Welding (GMAW) process, which ranges
from 66 to 85%[6].

The welding parameters used in the simulation are
in TABLE 1. The heat input (HI) values were deter-
mined by Eq. (25), multiplied by the material thickness.
The same HI values were used in the point and Gaussian
heat source models. However, in the Gaussian heat
source model, only ninety-five percent of HI was ap-
plied to the weld. In order to adjust such difference, the
HI values in TABLE 2 were multiplied by 1.05 for the
Gaussian model.
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TABLE 1 : Physical properties of low carbon steel and weld
parameters

pass I(A) V(V) v(m/s)  % HI(*106 
j/m) 

1 186 26.4 0.005 80 0.79 

2 235 26.2 0.005 75 0.92 

3 301 25.4 0.005 70 1.07 

k (j / ms0C) 31.67 

pc (J / ms30C) 61014.7   
a(m / s) 61044.4   

In order to verify the capability of the proposed
model to reproduce the thermal cycles, some values
were chosen for the y and y

b
 variables. These choices

took into account the heat input used in the simulation,
and also known values of y

b
 from the literature, ob-

tained via experimental determination. TABLE 3 shows
the y

b
 values obtained by Kou and Wang[7], Zacharia et
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RESULTS AND DISCUSSION

To compare the point and Gaussian heat source
models derived from similarity solution[4] and integral
solution, thermal cycles were simulated at two different
y locations, namely: y equal to 0.001 m, appropriate
for a position near the fusion zone (y < y

b
), and y equal

to 0.003 m, a location at a distance of the same magni-
tude as the y

b
 parameter. Figure 3 shows the thermal

al.[8], and Wu[9], as well as the heat input (HI) used in
their analyses. In the present work, the y

b
 parameter

was estimated based on the heat input values showed
in TABLE 2. In Eq. (18), the B coefficient was deter-
mined for the y

b
 distance, where the power is reduced

to five percent of its maximum value. According to this
equation, by increasing the heat input parameter y

b
 also

increases, such that the area under the curve of Figure
2 remains equal to ninety-nine percent of its q

max
 value.

Therefore, different values of y
b
 for each pass were

considered, since the heat input increased in the sec-
ond and third passes. The y

b
 values used in the simula-

tion were 0.004; 0.0047 and 0.0054 m for the first,
second and third pass, respectively.

TABLE 2 : Physical properties of low carbon steel and weld
parameters

Author I(A) V(V) v(m/s) yb(m) 

Kou and Wang[6] 100 11 0.0055 0.003 

Zacharia et al.[7] 175 14 0.0034 0.003 

Wu[8] 200 20 0.01 0.002 

Figure 3 : Thermal cycles for the point and Gaussian heat
source models, at y = 0.001 m.

cycles obtained after the point and Gaussian heat source
models, at y = 0.001 m.

It can be observed that the peak temperatures in
each pass are higher for the point heat source model
than for the Gaussian heat source models. This occurs
due to the assumption that the heat input is instanta-
neously applied over an infinitesimal volume cross-
sectioned by the thickness-width plane at the center
of the work piece. In the Gaussian heat source model,
it is assumed that the heat input is applied over the
finite volume, including the y coordinate at the extent
of the y

b
 parameter. Therefore, the peak temperatures

produced by the latter model is expectedly more re-
alistic. The previous determination of the peak tem-
perature to be reached at a specific location is inter-
esting, since it indicates fortuitous phase changes. The
differences between the temperatures simulated by the
three models are described in the TABLE 3. T

1
 refers

to maximum temperature reached in the first pass; T
2

in the second pass, and so on. It is worth noticing that
the correction in the proposed model affect only the
peak temperature determination, and no difference is
seen in the cooling rate.

TABLE 3 : Peak temperatures reached in each

Tpeak 
Point 
heat 

source 

Gaussian heat 
source-similarity 

solution[4] 

Gaussian heat 
source-integral 

solution 
T1 1810 1503 1645 

T2 2320 1892 2010 

T3 2495 2280 2345 

Figure 4 : Thermal cycles for the point and Gaussian heat
source models, at y = 0.003 m.
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In Figure 5, the thermal cycles were simulated us-
ing y = 0.001, 0.003 and 0.009 m

CONCLUSIONS

The main conclusions of this work are:
- the closed form solution obtained allows to esti-

mate the thermal cycles produced by multipass
welding process, near the fusion and heat affected
zones;

- the distributed heat source in the proposed solution
is an important correction for the known model with
point source, since this factor allows to obtain tem-
perature values more realistic near to the fusion zone;

- the analytical solution derived from the point source
model can be safely used to predict temperature
fields away from the fusion zone (FZ) and the heat
affected zone (HAZ).
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In Figure 4, the thermal cycles were simulated us-
ing y = 0.003 m. It is instrumental to show that, if y is
close to y

b
, the Gaussian heat source model is equiva-

lent to the point heat source solution. The three models
provide results that are practically the same. This means
that the point source model at distances far from the
fusion zone can correctly predict the temperature fields.

(a) y = 0.001 m

(b) y = 0.003 m

(c) y = 0.009 m

Figure 5 : 3D Temperature distribution in single cycle arc
welding, at y = 0.001, 0.003 and 0.009 m.


