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On the question of a dynamic solution in
general relativity

A\bstract

In 1921, the existence of bounded dynamics solutions was raised by Gullstrand. However,
some claimed to have explicit examples. It turns out that the bounded plane-wave of
Misner, Thorne and Wheeler is due to calculation errors. Wald claimed the second order
term of a wave can be obtained, but failed to have an example. Christodoulou and Klainerman
claimed to have constructed a set of bounded dynamic solutions. However, such a con-
struction is actually incomplete. ‘t Hooft came up with a bounded time-dependent solution,
but without an appropriate source. The fact is that bounded dynamic solutions for the
Einstein equation actually do not exist. For the dynamic case, the non-linear Einstein
equation and its linearization also cannot have compatible solutions. The existence of a
dynamic solution requires an additional gravitational energy-momentum tensor with an
antigravity coupling. Thus, the space-time singularity theorems, which require the same
sign for couplings, are irrelevant to physics. The positive energy theorem of Schoen and
Yau means only for stable solutions because no bounded dynamic solutions satisfy the
requirement of asymptotically flat. However, such recognition is crucial to identify the
charge-mass interaction. Its experimental verification means that Einstein’s unification
between electromagnetism and gravitation is proven valid.
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stayed on his position, and Einstein was awarded a
Nobel Prize by virtue of his photoelectric effects in-

The issue of dynamic solutions in general relativity
existed from the beginning of this theory until cur-
rently. The question started with the calculation of
the perihelion of Mercury. In 1915 Einstein obtained
the expected value of the remaining perihelion with
his theory, and thus was confident of its correctness.
The subsequent confirmation of the bending of light,
further boosted his confidence. However, unexpect-
edly the base of his confidence was questioned by
Gullstrand, the Chairman of the Nobel Prize for
Physics®l. The perihelion of Mercury is actually a
many-body problem, but Einstein had not shown that
his calculation could be derived from such a necessary
step. Thus, Mathematician D. Hilbert, who approved
Einstein’s initial calculation, did not come to its de-
fense.

In spite of objections from many physicists, Gullstrand

stead of general relativity as expected. The fact is, how-
ever, Gullstrand was right. In 1995, it is proven that
Einstein’s equation is incompatible with gravitational
radiation and also does not have a dynamic solution®*l.
For space-time metric g , the Einstein equation of
191581 is

1
Gw = Rw —ngR = —KT(m)w Q)

where G,uv is the Einstein tensot, Rﬂv is the Ricci curva-
ture tensor, T(m), is the energy-stress tensor for mas-
sive matter, and K (= 87ke?, and k is the Newtonian
coupling constant) is the coupling constant. Thus,

n
at vacuum. However, (1') also implies no gravitational
wave to carry away energy-momentum[®l.

Nevertheless, there are many erroneous claims for the

1
Gyy = Ry - SguyR = 0, or Ry =0 @)
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existence of a dynamic solution. Moreover, such claims
are not only accepted by the 1993 Nobel Prize Com-
mittee for Physics but also Christodoulou was awarded
with honor for his errors against the honorable
Gullstrand. As a result, normal progress in physics
has been hindered!®.

We shall show that such claims against Gullstrand are
incorrect. There are serious consequences in science
for the error of the mistaken existence of dynamic so-
lutions for the 1915 Einstein equation. Since the equa-
tion is incorrect for the dynamic case; it can lead to
only erroneous conclusions. A well-known result is
the existence of the so-called space-time singularities
due to Penrose and Hawking by implicitly assuming
the unique sign for all the coupling constants!”.. An-
other result is that the correct conjecture of Einstein
on unification between gravitation and electromagne-
tism was not recognized. Many theorists simply failed
to recognize the crucial charge-mass interaction whose
existence leads to the inescapable conclusion of unifi-
cationl®. Thus, the criticism of Gullstrand turns out
to be very constructive and beneficial.

Due to inadequacy in mathematics, theorists make se-
rious errors in addition to Einstein’s limitation. Thus,
generations of physicists are misled into serious errors.
This paper starts by identifying the most popular er-
rors of the so-called experts. It is also unfortunate that
mathematicians also help in perpetuating the errors
because they do not understand the physics!l.

ERRORS OF MISNER, THORNE AND
WHEELER AND THE ERRORS OF WALD

The Wheeler School led by Misner, Thorne and
Wheelet!® is probably currently most influential. Un-
fortunately, this school not only makes the error of
claiming the existence of dynamic solutions, but also
misinterpreted and distorted Einstein’s general rela-
tivity. Waldl"! wrote another popular book, but also
makes different kinds of errors.

A “wave” form considered by Misner, Thorne, &
Wheeler®! is as follows:

ds’ = c’dt” — dx* — L}(e®dy* + e™dz?) @

whete L = L(u), f = (1), n = ¢t — x, and ¢ is the light

speed. Then, the Einstein equation G, = 0 becomes
2 2

Misner et al.®¥! claimed that Eq. (3) has a bounded solu-

tion, compatible with a linearization of metric (2). It

has been shown with mathematics at the undergradu-

ate level® that Misner et al. are incorrect and Eq. (3)
does not have a physical solution that satisfies Einstein’s

requirement on weak gravity. In fact, L(») is un-
bounded even for a very small £ ().

On the other hand, from the linearization of the
Einstein equation (the Maxwell-Newton approxima-
tion) in vacuum, Einstein™! obtained a solution as fol-
lows:

ds’ = c’dt’ —dx’ — (1 + 2¢)dy’ — (1 — 2¢)dz’ @
where ¢ is a bounded function of # (= ¢ — x). Note
that metric (4) is the linearization of metric (1) if ¢ = S
(#). Thus, the problem of waves illustrates that the
linearization may not be valid for the dynamic case
when gravitational waves are involved since eq. (3) does
not have a weak wave solution. Since this crucial calcu-
lation can be proven with mathematics at the under-
graduate level, it should not be surprising that Misner
et al.Bl make other serious errors in mathematic and
physics such as on the local time in their eq. (40.14).
The root of the errors of Misner et al. was that they
incorrectly®# assumed that a linearization of a non-
linear equation would always produce a valid approxi-
mation. Thus, they obtained an incorrect conclusion
by adopting invalid assumptions. Linearization of (3)
yields .” = 0, and in turn this leads to S’ (1) = 0. In
turn, this leads to a solution I = C# + 1 where C, is
a constant. Therefore, if C,# 0, it contradicts the re-
quitement . & 7 unless |#| is very small. Moreover, b’
(w) = 0 implies that there is no wave. Thus, one cannot
get a weak wave solution through linearization of Eq.
(3), which has no bounded solution. This shows also
that the assumption of metric form (2)B, which has a
weak form (4), is not valid for the Einstein equation.
Many regard a violation of the Lorentz symmetry also
as a violation of general relativity. However, this no-
tion actually comes from the distortion of Einstein’s
equivalence principle by Misner, Thorne, & Wheeler!®
as follows:

“In any and every local Lorentz frame, anywhere and
anytime in the universe, all the (non-gravitational) laws
of physics must take on their familiar special-relativis-
tic form. Equivalently, there is no way, by experiments
confined to infinitesimally small regions of space-time,
to distinguish one local Lorentz frame in one region
of space-time frame from any other local Lorentz frame
in the same or any other region.”

They even claimed the above as Einstein’s equivalence
principle in its strongest forml®l. However, it actually
is closer to Pauli’s version, which Einstein regards as a
misinterpretation™ as follows:

“For every infinitely small world region (i.e. a world
region which is so small that the space- and time-varia-
tion of gravity can be neglected in it) there always ex-
ists a coordinate system K (X, X, X, X)) in which
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gravitation has no influence either in the motion of
particles or any physical process.”

Thus, Pauli regards the equivalence principle as merely,
at each world point P, the existence of a locally con-
stant space, which may not be a local Minkowski met-
ric, though having an indefinite metric.

Apparently, they do not understand or even were
unaware of the related mathematics™; otherwise they
would not make such serious mistakes. The phrase,
“must take on” should be changed to “must take on
approximately” Also, the phrase, “experiments con-
fined to infinitesimally small regions of space-time”
does not make sense since experiments can be conducted
only in a finite region. Moreover, in their eq. (40.14)
they got an incorrect local time of the earth (in dis-
agreement with Wald”!, Weinberg®, etc.) Thus, cleatly
these three theorists® failed to understand Einstein’s
equivalence principle®".

Furthermore, Thornel™ criticized Einstein’s principle
with his own distortion as follows:

“In deducing his principle of equivalence, Einstein ig-
nored tidal gravitation forces; he pretended they do not
exist. Einstein justified ignoring tidal forces by imagin-
ing that you (and your reference frame) are very small.”
However, Einstein has already explained these prob-
lems in his letter of 1953 to Rehtz!"l as follows:

“The equivalence principle does not assert that every
gravitational field (e.g., the one associated with the Earth)
can be produced by acceleration of the coordinate sys-
tem. It only asserts that the qualities of physical space, as
they present themselves from an accelerated coordinate
system, represent a special case of the gravitational field.”
Perhaps, Thorne did not know that #he term “Einstein
elevator” of Bergmann is misleading. As Einstein!
explained to Laue, “What characterizes the existence
of a gravitational field, from the empirical standpoint,
is the non-vanishing of the ['/¢ (field strength), not

2
ik’
Although Einstein’s equivalence principle was clearly

illustrated only recently™®"), the Wheeler School should
bear the responsibility of their misinformation on this
principle™ by ignoring both crucial work of Einstein,

the non-vanishing of the R

i.e., references [5] and [14], and related theorems!™.
Moreover, they give the irrelevant incorrect 1911 as-
sumption™ on the equivalence of Newtonian gravity
and acceleration as references although Newtonian grav-
ity is not equivalent to acceleration.

Waldl!) a well-known author in general relativity is
also mistaken on the existence of dynamic solutions.
According to EinsteinPl, in general relativity weak
sources would produce a weak field, i.e.,

g, =M, T V0 where Oy, 0 << 1 5)

and n,, is the flat metric when thetre is no source. For
the static case, condition (5) is verified although not
for the dynamic case. However, according to the prin-
ciple of causality, condition (5) should be valid; but
this is true only if the equation is valid in physics.
Many theorists failed to see this because they failed to
see the difference between physics and mathematics
clearly™. In other words, condition (5) for weak grav-
ity and whether the principle of causality is applicable
need a rigorous proof.

Unfortunately, many believe that condition (5) for
weak gravity is always valid because of accurate pre-
dictions for the static case. When the Einstein equa-
tion has a weak solution, an approximate weak solu-
tion can be derived through the approach of the field
equation being linearized. The linearized Einstein equa-

tion with the linearized harmonic gauged"y, =0 is
1 .. _ 1
E@ 6ayw = KTW where ¥, =Y, —ETIP\,'Y

and 7 =1%y, ©)
Note that we have

1 _
=G O e) W ==9" -
G, =G, +G,® and Chy 26 0.7,

a ~ a ~ 1 [ ~
0%0, Y e — 0%0 Y 1a +Enwﬁ % o )
The linearized vacuum Einstein equation means

Gl lr1=0 ®)
Thus, as pointed out by Wald, in order to maintain a
solution of the vacuum FEinstein equation to second
order we must correct Y by adding to it the term

v® where y® satisfies
v, [ny

GOl +G2ly, =0, where v, =0, +10,  ©)
which is the correct form of eq. (4.4.52) in”! (Wald did
not distinguish v from y® ). This equation does have
a solution for the static case. However, detailed calcu-
lation shows that this equation does not have a solu-
tion for the dynamic casel*.

If there is no solution for eq. (9), then the Einstein
equation does not have a bounded dynamic solution.
For instance, metric (4) is the linearization of metric
(2), but eq. (3) does not have a bounded wave solution.
In conclusion, due to confusion between mathematics
and physics, Wald™ also made errors in mathematics
at the undergraduate level. The principle of causality
requires the existence of a dynamic solution, but Wald
did not see that the Einstein equation can fail this re-
quirement.

Now, consider another well-known metric obtained
by Bondi, Pirani, & Robinson™! as follows:
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cosh2ﬁ(d772+dg2)
ds? :ez‘p(drz—dfz)—uz +sinh2ﬂc0520(d172—dg2)
(10a)
—2sinh 2 fsin20dndg
where @, f and 6 are functions of # (= 7 - &). It satis-
fies the differential equation (i.e., their Eq. [2.8]),

24 = u( 2 1 92sinh?2 ﬂ) (10b)

They claimed this is a wave from a distant source. (10b)
implies @ cannot be a periodic function. The metric is
irreducibly unbounded because of the factor #?. Both
eq. (3) and eq. (10b) are special cases of G, = 0. How-
ever, linearization of (10b) does not make sense since
variable # is not bounded. Thus, they claim Einstein’s
notion of weak gravity invalid because they do not
understand the principle of causality adequately.
Moreover, when gravity is absent, it is necessary to
have ¢=sinh2f =sin20 =0. These would reduce (10a)
to

ds? = (drz - dg?)-u? (dnz - dg“z) (10¢)

However, this metric is not equivalent to the flat met-
ric. Thus, metric (10c) violates the principle of causal-
ity. Also it is impossible to adjust metric (10a) to be-
come equivalent to the flat metric.

This challenges the view that both Einstein’s notion of
weak gravity and his covariance principle are valid.
These conflicting views are supported respectively by
the editorials of the “Royal Society Proceedings A”
and the “Physical Review D”; thus there is no general
consensus. As the Royal Society correctly pointed
out!®®1 Einstein’s notion of weak gravity is inconsis-
tent with his covariance principle. However, Einstein’s
covariance principle has been proven invalid since
counter examples have been found®*??. Moreover,
Einstein’s notion of weak gravity is supported by the
principle of causality.

A major problem is that there are theorists who also
ignore the principle of causality. For example, another
“plane wave”, which is intrinsically non-physical, is the
metric accepted by Penrose®! as follows:

ds? = du dv + Hdu®? - dx;dx; , where H= hij (u)xix]- (11)

where u=ct-z, v=ct+z. However, there are non-
physical parameters (the choice of origin) that are un-
related to any physical causes. Being a mathematician,
Penrose®! over-looked the principle of causality.
Another good example is the plane-wave solution of
Liu & ZhouP, which satisfies the harmonic gauge, is
as follows:

ds? = de? — dx? + 2 F(dt - dx)*— cosh 2y(e* dy? + e #dz?)

— 2sinh 2y dy dz 12)

where ¢ = ¢(u) and y = y(u). Moreover, F = F, +
H, where

F, = %(\V 2+ ¢ cosh®2y) [cosh2y (e y? + e 2?)

+2sinh 24 yz] (13)
and H satisfies the equation,
cosh 2y (¢*H,,, + ¢* H, ) - 2sinh 2y H, =0 (14)

For the weak fields one has 1 >> ||, 1 >> |y|, but
there is no weak approximation as claimed to be

ds? = det — dx? — (1 + 2¢) dy? — (1 - 2¢)dz*— dydydz  (15)

. . ]
because Fp is not bounded unless o and y are zero

(i.e., no wave).

The linearized equation for a dynamic case has been
llustrated as incompatible with the non-linear Einstein
equation, which has no bounded dynamic solutions.
Thus, Eq. (3), Eq. (10b), and Eq. (12) serve as good
simple examples that can be shown through explicit
calculation that linearization of the Einstein equation
is not valid. Also, metric (11) suggests that the cause of
having no physical solution would be due to inadequate
source terms?3l,

An independent supplementary convincing evidence
for the absence of a bounded dynamic solution is, as
shown by Hu, Zhang & Ting®®, that gravitational ra-
diation calculated would depend on the approach used.
This is also a manifestation that there is no bounded
solution. A similar problem in approximation schemes
such as post-Newtonian approximation™! is that their
validity is also only assumed.

In the pretext of a “modern view”, Wald! implicitly
rejected Einstein’s equivalence principle. Wald incor-
rectly claimed the equivalence of inert mass and the
gravitational mass due to Galileo and Newton as “the
equivalence principle”. However, the 1993 Nobel Prize
Committee for Physics adopted this view because of
inadequate understanding of the equivalence principle
that Einstein emphasizes in his life time. In so doing,
Wald also avoided criticizing Misner et al.’] because
they have misidentified Einstein’s equivalence principle
of 1916 as the invalid 1911 assumption of equivalence
between acceleration and Newtonian gravity. How-
ever, this also exposed that Wald does not understand
Einstein’s equivalence principle, which plays a crucial
role in establishing the validity of the Maxwell-New-
ton Approximation independently®®. Apparently, he
did not see that Einstein’s covariance principle is in-
valid in physics.

THE ERRORS OF CHRISTODOULOU

The fact that Christodoulou received honors for his
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errors related to the Einstein equation testified, “Un-
thinking respect for authority is the greatest enemy of
truth” as Einstein asserted. The strategy of the Nobel
Prize based on the recognition time lag failed because
mathematical and logical errors can be subtle. Many
theorists just do not have the caution, and patience
and/or the mathematical background to find out the
subtle errors involved as shown in the press release of
the Nobel Committee.

Due to errors in undergraduate mathematics
Christodoulou & Klainerman®" claimed that they have
constructed dynamic solutions. However, one should
not be too surprised because Christodoulou obtained
his Ph. D. under Wheeler, who also has similar prob-
lems in mathematics (see Section 2). Because of the sup-
port of the Princeton University, progress in physics
did suffer not only from their errors, but also wasting

[29]
b

the resources. Fortunately such a struggle comes to an
end when their errors can be illustrated with math-
ematics at the undergraduate level®?732 Moreover,
only after the non-existence of a dynamic solution for
the Finstein equation was recognized, Einstein’s con-
jecture of the unification between electromagnetism
and gravitation is proven correctB%1231-34,

The book of Christodoulou & KlanermanP®! is con-
fusing (see Appendix A). Their main Theorem 1.0.3
states that any strongly asymptotically flat (S.A.F.)
initial data set that satisfies the global smallness assump-
tion leads to a unique globally hyperbolic asymptoti-
cally flat development. However, because the global
smallness assumption has no dynamic requirements in
their proofs, there is no assurance for the existence of
a dynamic S.A.F. initial data set®. Thus, the existence
of a bounded dynamic initial set is assumed only, and
their proof is at least incomplete.

Mathematician PerlikP® commented, “What makes the
proof involved and difficult to follow is that the au-
thors introduce many special mathematical construc-
tions, involving long calculations, without giving a clear
idea of how these building-blocks will go together to
eventually prove the theorem. The introduction, al-
most 30 pages long, is of little help in this respect.
Whereas giving a good idea of the problems to be faced
and of the basic tools necessary to overcome each prob-
lem, the introduction sheds no light on the line of
thought along which the proof will proceed for math-
ematical details without seeing the thread of the story.
This is exactly what happened to the reviewer.” Essen-
tially, they assume the existence of a bounded initial
set to prove the existence of a bounded solution. More-
over, his initial condition has not been proven as com-
patible with the Maxwell-Newton approximation which
is known to be valid for weak gravity®.

This book review originally appeared in ZfMP in
1996; and republished in the journal, GRGP® again
with the editorial note, “One may extract two mes-
sages: On the one hand, (by seeing e.g. how often this
book has been cited), the result is in fact interesting
even today, and on the other hand: There exists, up to
now no generally understandable proof of it.”

The review actually suggests that problems would be
adequately identified in the introduction. As shown
in [29], the possible nonexistence of their dynamic so-
lutions and its incompatibility with Einstein’s radia-
tion formula can be discovered in their introduction.
From this review, what the Shaw Prize claimed as “for
their highly innovative works on nonlinear partial dif-
ferential equations in Lorentzian and Riemannian ge-
ometry and their applications to general relativity and
topology.”, in the case of Christodoulou, seems to be
just a euphemism for a highly confusing and incom-
prehensible presentation. These manifest that the au-
thors have not grasped the essence of the problem.
Moteover, they seem to try to create enough confu-
sion to gain the acceptance from the readers, with the
support of the Princeton University.

Their style of claim is similar to what Misner et al.¥
did. They claimed their plane-wave equation (3), has a
bounded plane-wave solution with some confusing
invalid calculations. However, careful calculation with
undergraduate mathematics shows that this is impos-
siblePl. Thus, many others like Chistodoulou made or
accepted an invalid claim.

Many theorists assume a physical requirement would
be unconditionally satisfied by the Einstein equation,
and such a view was adapted by Christodoulou. Ac-
cording to the principle of causality, a bounded dy-
namic solution should exist, but this does not neces-
sarily mean that the Einstein equation has such a solu-
tion. As shown, the mathematical analysis of
Christodoulou is also not reliable at the undergradu-
ate level although he claimed to have such a strong
interest in his autobiography.

Gullstrand was not the only theorist who questioned
the existence of the bounded dynamic solution for the
Einstein equation. As shown by FockP’, any attempt
to extend the Maxwell-Newton approximation (the
same as the lineatized equation with mass sourcesP!) to
higher approximations leads to divergent terms. In
1995, it has been provenP* that for a dynamic case the
linearized equation as a first order approximation, is
incompatible with the nonlinear Einstein field equa-
tion. Moreover, the Einstein equation does not have a
dynamic solution for weak gravity unless the gravita-
tional energy tensor with an anti-gravity coupling is
added to the source (see also eq. [1]). The necessity of

FP 211



JSE, 2(3), 2013

Full Paper

an anti-gravity coupling term manifests why a bounded

wave solution is impossible for Finstein’s equation.

Their bookP" was accepted because it supports and is

consistent with existing errors as follows:

(1) It supports errors that created a faith on the exist-
ence of dynamical solutions of physicists includ-
ing Einstein etc.

(2) Due to the inadequacy of the mathematics used,
the book was cited before 1996 without referring
to the details.

(3) Nobody suspected that professors in mathematics
and/or physics could make mistakes at the un-
dergraduate level.

(4) Because physical requirements were not under-
stood, unphysical solutions were accepted as
Vahd [23,38-40] .

Thus, in the field of general relativity, strangely there
is no expert almost 100 years after its creation.
In physics, a dynamic solution must be related to dy-
namic sources, but a “time-dependent” solution may
not necessarily be a physical solution!#:4%%1 To be-
gin with, their solutions are based on dubious physi-
cal validity®). For instance, their “initial data sets” can
be incompatible with the field equation for weak grav-
ity. Second, the only known cases are static solutions.
Third, they have not been able to relate any of their
constructed solutions to a dynamic source. In pure
mathematics, if no example can be given, such abstract
mathematics is likely wrong!®l.
In fact, there is no time-dependent example to illus-
trate the claimed dynamics™). In 1953 Hogarth* con-
jectured that a dynamic solution for the Einstein equa-
tion does not exist. Moreover, in 1995 it is proven
impossible to have a bounded dynamic solution be-
cause the principle of causality is violated®!.

Nevertheless, the mistakes of the 1993 Nobel Com-

mittee probably show that the level of misunderstand-

ing in general relativity then that had led to a number

of awards and honors for the errors of D.

Christodoulou (Wikipedia) as follows:

MacArthur Fellows Award (1993);

Boécher Memorial Prize (1999);

Member of American Academy of Arts and Sciences

(2001);

Tomalla Foundation Prize (2008);

Shaw Prize (2011);

Member of U.S. National Academy of Sciences (2012).

Note that there are many explicit examples that show

the claims of Christodoulou are incorrect!?2%1. How-

ever, due to the practice of biased authority worship,

many theorists just ignored them. Physically, a

bounded dynamic solution should exist, but Einstein’s

field equation just does not have such a solution. Now,

in view of the facts that Christodoulou’s contributions
to general relativity are essentially just errors, it is up
to the U.S. National Academy of Sciences to handle
such a special case.

Note that their bookP has been criticized by Volker
PerlickP** as “incomprehensible”. Moreover, S. T. Yau
has politely lost his earlier interests on their claimsPl.
A correct evaluation of this book should be as an ex-
ample to show what went wrong in general relativity.
The awards and honors to Christodoulou clearly mani-
fested an unpleasant fact that most of the physicists do
not understand pure mathematics adequately and many
mathematicians do not understand physics.

Note that Damour and Taylor*»*! were not certain
on their Post-Keplerian parameters in generic gravity
theories. It will be shown that this is impossible since
Einstein equation of 1915 does not have a bounded
dynamic solution.

THE GRAVITATIONAL WAVE AND NONEX-
ISTENCE OF DYNAMIC SOLUTIONS FOR
EINSTEIN’S EQUATION

First, a major problem is a mathematical error on the
relationship between Einstein equation (1) and its “lin-
earization”. It was incorrectly believed that the linear
Maxwell-Newton Approximation

1

5005 uy = - KT(m) , where

Y = Tay - 5 vy (162)
and

Y HV(xi, t) = - % | % Tuv[yi’ (t - R)]d, where

R = Z;(xi -yl (16b)

provides the first-order approximation for equation
(1). This belief was verified for the static case only.

For a dynamic case, however, this is no longer valid.
Note that the Cauchy data cannot be arbitrary for (1).
The Cauchy data of (1) must satisfy four constraint
equations, G = -KT(m) (U = x, y, 2, ©) since G |
contains only first-order time derivatives!™. This shows
that (16a) would be dynamically incompatible®! with
equation (1)1, Further analysis shows that, in terms
of both theory?" and experimentsP), this mathemati-
cal incompatibility is in favor of (106), instead of (1).

In 1957, FockP"! pointed out that, in harmonic coot-
dinates, there are divergent logarithmic deviations from
expected linearized behavior of the radiation. This was
interpreted to mean merely that the contribution of
the complicated nonlinear terms in the Einstein equa-
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tion cannot be dealt with satisfactorily following this
method and that another approach is needed. Subse-
quently, vacuum solutions that do not involve loga-
rithmic deviation were founded by Bondi, Pirani &
Robinson™! in 1959. Thus, the incorrect interpreta-
tion appears to be justified and the faith on the dy-
namic solutions maintained. It was not recognized until
19958 that such a symptom of divergence actually
shows the absence of bounded physical dynamic solu-
tions.

In physics, the amplitude of a wave is related to its
energy density and its source. Equation (16) shows that
a gravitational wave is bounded and is related to the
dynamic of the source. These are useful to prove that
(16), as the first-order approximation for a dynamic
problem, is incompatible with equation (1). Its exist-
ing “wave” solutions are unbounded and therefore can-
not be associated with a dynamic source®. In other
words, there is no evidence for the existence of a physi-
cal dynamic solution.

With the Hulse-Taylor binary pulsar experiment!®l, it
became easier to identify that the problem is in (1).
Subsequently, it has been shown that (106), as a first-
order approximation, can be derived from physical
requirements which lead to general relativity®®]. Thus,
(16) is on solid theoretical ground and general relativ-
ity remains a viable theory. Note, however, that the
proof of the nonexistence of bounded dynamic solu-
tions for (1) is essentially independent of the experi-
mental supports for (10).

To prove this, it is sufficient to consider weak gravity
since a physical solution must be compatible with
Einstein’sP®! notion of weak gravity (i.e., if there were
a dynamic solution for a field equation, it should have
a dynamic solution for a related weak gravity®). To
calculate the radiation, consider,

Gpv = G(i)pv + G(Z)HV, where

1

GOuy = 5 8% 3 1y + HOy (17a)
1 p— p—

HOuy = -5 00,7 o + 87y +

. _

EnuvacadY ogr 2nd 1 >> |yuv | (17b)

G® , is at least of second order in terms of the metric
elements. For an isolated system located near the ori-
gin of the space coordinate system, G® at large r (=
[x* + y* + 22 |3 is of O(K?/?)H8B],

One may obtain some general characteristics of a dy-
namic solution for an isolated system as follows:

(1) The characteristics of some physical quantities of

an isolated system:

For an isolated system consisting of particles with

typical mass M, separation r, and velocities V,
Weinberg estimated, the power radiated at a fre-
quency ® of order v/t will be of order

Pak(v/T)M2t%orPr M v8/1 (18)

since KM /r is of order v% The typical decelera-

tion a _, of particles in the system owing this en-
ergy loss is given by the power P divided by the

v - ~c7/= :
momentum M v, of a_, v /t. This may be
compared with the accelerations computed in
Newtonian mechanics, which are of order v2/t,

and with the post-Newtonian correction of v/ T
Since radiation reaction is smaller than the post-

Newtonian effects by a factor V3, if Vv << c, the
velocity of light, the neglect of radiation reaction is
perfectly justified. This allows us to consider the
motion of a particle in an isolated system as almost
periodic.

Consider two particles of equal mass m with an
almost circular orbit in the x-y plane whose origin
is the center of the circle (i.e., the orbit of a particle
is a circle if radiation is neglected). Thus, the prin-
ciple of causality?*! implies that the metric g is
weak and very close to the flat metric at distance
far from the source and that g (%, v, z, ) is an
almost periodic function of t* (= t - t/c).

(2) The expansion of a bounded dynamic solution g |
for an isolated weak gravitational source:
According (16), a first-order approximation of met-
ric g (x,y, z, ) is bounded and almost periodic
since T is. Physically, the equivalence principle
requires g . to be bounded, and the principle of
causality requires g  to be almost periodic in time
since the motion of a source particle is. Such a met-
ric g is asymptotically flat for a large distance 1,
and the expansion of a bounded dynamic solution
is:
guv(nx, nY, n% 1, ) = Ny +

e 0]
szl‘ Hv(k)(nx, nY, n?, ¢)/1% where nV = xV/r  (19a)

(3) The non-existence of dynamic solutions:
It follows expansion (19a) that the non-zero time
average of G(l)llt would be of O(1/r3) due to

6an = (8"}‘l + nVY np)/r (19b)

since the term of O(1 /r2), being a sum of deriva-
tives with respect to t’, can have a zero time-aver-
age. If G(Z)ut is of O(Kz/rz) and has a nonzero
time-average, consistency can be achieved only if
another term of time-average O(K2/r2) at vacuum
be added to the source of (1). Note that there is no
plane-wave solution for (17)547,
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It will be shown that there is no dynamic solution for
(1) with a massive source. Let us define

— .1 2 .y (@ = A 1 i
Tay = y( )FW + y( )FW 3 Y (I)LI.V = Y(I)LW - ;n“v (Y(l)cd nCd)
wherei =1, 2;

and

1
5 0%, 5 (l)uv = - K T(m)y, (20)

Then ¥ (1)HV is of a first-order; and Y(Z)}W is finite.
On the other hand, from (1), one has
21

Note that, for a dynamic case, equation (21) may not
be satisfied. If (20) is a first-order approximation, G® ny
has a nonzero time-average of O(K2/r2)B; and thus

1 7 (2 1 2)
2a“‘amy()”v+H( )HV+G( )”v_o

1% py cannot have a solution.
However, if ¥ @ v is also of the first-order of K, one

cannot estimate G(2) v by assuming that ¥ @ py pro-
vides a first-order approximation. For example, (6) does
not provide the first approximation for the static
Schwarzschild solution, although it can be transformed
to a form such that (6) provides a first-order approxi-
mation®?”. According to (7), ¥ (Z)MV will be a second
order term if the sum H() v is of second order. From
(17b), this would require oMy v being of second or-

der. For weak gravity, it is known that a coordinate
transformation would turn oMy v to a second order
term (can be zero)!*#1 (Eq. [21] implies that
00y (Z)MV - GC[GV?MC + auy\/c] would be of sec-
ond order.) Thus, it is always possible to turn (20) to
become an equation for a first-order approximation
for weak gravity.

From the viewpoint of physics, since it has been proven
that (16) necessarily gives a first-order approxima-
tionl a failure of such a coordinate transformation
means only that such a solution is not valid in physics.
Moreover, for the dynamic of massive matter, experi-
ment® supports the fact that Maxwell-Newton Ap-
proximation (16) is related to a dynamic solution of
weak gravityPl. Otherwise, not only is Einstein’s ra-
diation formula not valid, but the theoretical frame-
work of general relativity, including the notion of the
plane-wave as an idealization, should be re-examined.
In other words, theoretical considerations in physics
as well as experiments eliminate other unverified specu-
lations thought to be possible since 1957.

As shown, the difficulty comes from the assumption
of boundedness, which allows the existence of a
bounded first-order approximation, which in turn
implies that a time-average of the radiative part of

G© pv is non-zero. The present method has an advan-
tage over Fock’s approach to obtaining logarithmic
divergenceP?*"! for being simple and clear.

In short, according to Einstein’s radiation formula, a
time average of G(9), . is non-zero and of O(K2/r2)PI,
Although (16) implies G(l)ut is of order K2, its terms
of O(1/ r2) can have a zero time average because G t
is linear on the metric elements. Thus, (1°) cannot be
satisfied. Nevertheless, a static metric can satisfy (1),
since both G(l)“\, and G(Z)“V are of O(K2/t% in
vacuum. Thus, that a gravitational wave carries energy-
momentum does not follow from the fact that G(2) N
can be identified with a gravitational energy-stress®5l.
Just as Gy, G(Z)},tv should be considered only as a
geometric part. Note that G“t = 'KT(m)Ht are con-
straints on the initial data.

In conclusion, in disagreement with the physical re-
quirement, assuming the existence of dynamic solu-
tions of weak gravity for (1)['3750551 is invalid. This
means that the calculations!*** on the binary pulsar
experiments should, in principle, be re-addressed?®*.
This explains also that an attempt by Christodoulou
and KlainermanB? to construct bounded “dynamic”
solutions for Gy, = 0 fails to relate to a dynamic source
and to be compatible with (16)P although their solu-
tions do not imply that a gravitational wave carries
energy-momentum.

For a problem such as scattering, although the motion
of the particles is not periodic, the problem remains.
This will be explained (see Section 6) in terms of the
1995 update of the Einstein equation, due to the neces-
sary existence of the gravitational energy-momentum
tensor term with an antigravity coupling in the source.
To establish the 1995 update equation, the supports of
binary pulsar experiments for (3) are neededP..

GRAVITATIONAL RADIATIONS,
BOUNDEDNESS OF PLANE-WAVES, AND
THE MAXWELL-NEWTON APPROXIMATION

An additional piece of evidence is that there is no plane-
wave solution for (1). A plane-wave is a spatial-local
idealization of a weak wave from a distant source. The
plane-wave propagating in the z-direction is a physical
model although its total energy is infinite™*). Accord-
ing to (16), one can substitute (t - R) with (t - z) and the
other dependence on r can be neglected because r is
very large. This results in ¥ V(xi, t) becoming a
bounded periodic function of J: - z). Since the Max-
well-Newton Approximation provides the first-order,
the exact plane-wave as an idealization is a bounded
periodic function. Since the dependence of 1/r is ne-
glected, one considers essentially terms of O(l/rz) in
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(el®) pv- In fact, the non-existence of bounded plane-
wave for Gy, = 0, was proven directly in 19912591,
In short, Einstein & RosenP”™ is essentially right, i.e.,
there are no wave solutions for Ry, = 0. The fact that
the existing “wave” solutions are unbounded also con-
firms the nonexistence of dynamic solutions. The fail-
ure to extend from the linearized behavior of the ra-
diation is due to the fact that there is no bounded physi-
cal wave solution for (1) and thus this failure is inde-
pendent of the method used.

Note that the Finstein radiation formula depends on
(16) as a first-order approximation. Thus, metric gy
must be bounded. Otherwise G|}, = 0 can be satis-
fied. For example, the metric of Bondi et al.®! (see eq.
10) is not bounded, because this would require the
impossibility of u* < constant. An unbounded func-
tion of u, f(u) grows anomaly large as time T goes by.
It should be noted also that metric (10) is only a plane,
but not a periodic function because a smooth periodic
function must be bounded. This unboundedness is a
symptom of unphysical solutions because they cannot
be related to a dynamic source (see also [25, 27]). Note
that solution (10) can be used to construct a smooth
one-parameter family of solutions?! although solution
(10) is incompatible with Einstein’s notion of weak
gravity®l.

In 1953, questions were raised by Schiedigget® as to
whether gravitational radiation has any well-defined
existence. The failure of recognizing Gy = 0 as in-
valid for gravitational waves is due to mistaking (16) as
a first-order approximation of (1). Thus, in spite of
Einstein’s discovery® and Hogarth’s conjecture!*?
on the need of modification, the incompatibility be-
tween (1) and (16) was not proven until 1993P! after
the non-existence of the plane-waves for Gy, = 0, had
been proven.

THE INVALIDITY OF SPACE-TIME SINGU-
LARITY THEOREMS AND THE UPDATE OF
THE EINSTEIN EQUATION

In general, (16) is actually an approximation of the 1995
update of the Einstein equation®
(22)

1
Guy = Ryy - 5 guR = - K [T(m)yy - @)y

where t(g)y is the energy-stress tensors for gravity.
Then,

VHT(m),, = 0, and Vhe(g),, = 0 (23)
Equation (22) implies that the equivalence principle
would be satisfied. From (22), the equation in vacuum
is

G,y =R

uv = Suy - (22)

1
;guvR =K t(g)p,v

Note that t(g)py is equivalent to G®yy (and Einstein’s
gravitational pseudotensor) in terms of his radiation
formula. The fact that t(g)uy and Gy are related
under some circumstances does not cause G®y to be
an energy-stress nor t(g)uy a geometric part, just as
Gpyv and Ty must be considered as distinct in (1).
When gravitational wave is present, the gravitational
energy-stress tensor t(g)uy is non-zero. Thus, a radia-
tion does carry energy-momentum as physics requires.
This explains also that the absence of an anti-gravity
coupling which is determined by Einstein’s radiation
formula, is the physical reason that the 1915 Einstein
equation (1) is incompatible with radiation.

Note that the radiation of the binary pulsar can be
calculated without detailed knowledge of t(g)yy. From
(22"), the approximate value of t(g)yy at vacuum can
be calculated through Gpv/ K as before since the first-
order approximation of gyy can be calculated through
(16). In view of the facts that Kt(g) v is of the fifth
order in a post-Newtonian approximation, that the
deceleration due to radiation is of the three and a half
order in a post-Newtonian approximation™ and that
the perihelion of Mercury was successfully calculated
with the second-order approximation from (1), the
orbits of the binary pulsar can be calculated with the
second-order post-Newtonian approximation of (22)
by using (1). Thus, the calculation approaches of
Damour and Taylor**! would be essentially valid
except that they did not realize the crucial fact that
(16) is actually an approximation of the updated equa-
tion (22)01.

In light of the above, the Hulse-Taylor experiments
support the anti-gravity coupling being crucial to the
existence of the gravitational waveP*) and (16) being
an approximation of weak waves generated by massive
matter. Thus, it has been experimentally verified that
(1) is incompatible with radiation.

It should be noted that the existence of an anti-gravity
couplingP”! means the energy conditions in the singu-
larity theorems®®! are not valid for a dynamic situa-
tion. Thus, the existence of singularity is not certain,
and the claim of inevitably breaking of general relativ-
ity is actually baseless since these singularity theorems
have been proven to be unrealistic in physics. As
pointed out by EinsteinPl) his equation may not be
valid for very high density of field and matter. In short,
the singularity theorems show only the breaking down
of theories of the Wheeler-Hawking school, which are
actually different?®. The theories of this school, in
addition to making crucial mistakes in mathematics as
shown in this paper (see also [27, 29]), differ from gen-
eral relativity in at least the following important as-
pects:
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(1) They reject an anti-gravity coupling?®”, which is

considered as highly probable by Einstein himself.

(2) They implicitly replaced Einstein’s equivalence
principle in physics®” with merely the mathemati-
cal requirement of the existence of local Minkowski
spaces[”61,

(3) They, do not consider physical principles?272%47]
(see also Section 5), such as the principle of causal-
ity, the coordinate relativistic causality, the corre-
spondence principle, etc. of which the satisfaction
is vital for a physical space, which models reality,
such that Einstein’s equivalence principle can be
applicable.

Thus, in spite of declaring their theories as the devel-
opment of general relativity”®], these theories actually
contradict crucial features that are indispensable in
Einstein’s theory of general relativity. More impor-
tantly, in the development of their so-called “ortho-
dox theory,” they violate physical principles that took
generations to establish. As a result, Einstein’s theory
has been unfairly considered as irrelevant in the eyes
of many physicists. They also support their accusa-
tions with false evidencel®".
Of course, the exact form of t(g)yy is important for
the investigation of high density of field. However,
the physics of very high density of field and matter
seems to be not yet mature enough at present to allow
a definitive conclusion. For instance, it is unclear what
influence the discovery of quarks and gluons in par-
ticle physics would have on the evolution of stars. It is
known that atomic physics supports the notion of
white-dwarf stars, and that nuclear physics leads to
the notion of neutron stars.

UNBOUNDED “GRAVITATIONAL WAVES”,
THE PRINCIPLE OF CAUSALITY, AND THE
ERRORS OF ‘t Hooft

“To my mind there must be at the bottom of it all,
not an equation, but an utterly simple idea. And to
me that idea, when we finally discover it, will be so
compelling, so inevitable, that we will say to one an-
other, ‘Oh, how beautiful. How could it have been
otherwise?” “ — J. A. Wheeler®.

It seems, the principle of causality®! (i.e., phenomena
can be explained in terms of identifiable causes)?*
would be qualified as Wheeler’s utterly simple idea.
Being a physicist, his notion of beauty should be based
on compelling and inevitability, but would not be
based on some perceived mathematical ideas. It will be
shown that the principle of causality is useful in exam-
ining validity of accepted “waves”.

According to the principle of causality, a wave solu-

tion must be related to a dynamic source, and there-
fore is not just a time-dependent metric. A time-de-
pendent solution, which can be obtained simply by a
coordinate transformation, may not be related to a
dynamic sourcel®'. Even in electrodynamics, satis-
fying the vacuum equation can be insufficient. For
instance, the electromagnetic potential solution
Aglexp(t - z)2] (A is a constant), is not valid in physics
because one cannot relate such a solution to a dynamic
source. Thus, a solution free of singularities may not
be physically valid.

A major problem in relativity is that the equivalence
principle has not been understood adequately?®*. Since
a Lorentz manifold was mistaken as always valid, physi-
cal principles were often not considered. For instance,
the principle of causality was neglected such that a gravi-
tational wave was not considered as related to a dy-
namic source, which may not be just the source term
in the field equation!™%,

Since the principle of causality was not understood
adequately, solutions with arbitrary nonphysical pa-
rameters were accepted as valid®. Among the existing
“wave” solutions, not only Finstein’s equivalence prin-
ciple but also the principle of causality is not satisfied
because they cannot be related to a dynamic source.
(However, a source term may not necessarily repre-
sent the physical cause54))

Here, examples of accepted “gravitational waves” are
shown as invalid.

Let us examine the cylindrical waves of Einstein &
Rosen®®. In cylindrical cootdinates, p, @, and z,

ds? = exp(2y - 2¥)(dT? - dp?) - pPexp(-2¥)dg?
- exp(2¥)dz? (24)
where T is the time coordinate, and y and y are func-
tions of p and T. They satisfy the equations
¥pp + (/DY - 1 = 0, 7p = p[¥p% + ¥17l,
and yp = 2p¥, ¥ (25)
Rosen!® consider the energy-stress tensor T  that has
cylindrical symmetry. He found that
T+ e =0, and T,) + ¢l = (26)
where t  is Einstein’s gravitational pseudotensor, t4/
is momentum in the radial direction.

However, Weber & Wheelet!®! argued that these re-
sults are meaningless since tyy is not a tensor. They
further pointed out that the wave is unbounded and
therefore the energy is undefined. Moreover, they
claimed metric (24) satisfying the equivalence principle
and speculated that the energy flux is non-zero.
Their claim shows an inadequate understanding of the
equivalence principle. To satisfy this principle requires
that a time-like geodesic must represent a physical free
fall. This means that all (not just some) physical re-
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quirements are necessarily satisfied. Thus, the equiva-
lence principle may not be satisfied in a Lorentz Mani-
fold®"$31 which implies only the necessary condition
of the mathematical existence of a co-moving local
Minkowski space along a time-like geodesic. It will be
shown that manifold (24) cannot satisfy coordinate
relativistic causality. Moreover, as pointed out earlier,
an unbounded wave is unphysical.

Weber and Wheeler’s arguments for unboundedness
are complicated, and they agreed with Fierz’s analysis,
based on (25), that y is a strictly positive where ¥ =
0. However, it is possible to see that there is no physi-
cal wave solution in a simpler way. Gravitational red
shifts imply that g < 1P); and
“8pp 2 S ‘g(p(p/pz 2 g and -g,, > gy, (27a)
are implied by coordinate relativistic causality. Accord-
ing to these constraints, from metric (24) one has
exp(2y) £1 and exp (2y) < exp(2¥) (27b)
Equation (27) implies that g¢e < 1 and that ¥ < 0. How-
ever, this also means that the condition y > 0 cannot
be met. Thus, this shows again that there is no physi-
cal wave solution for Gy = 0.

Weber and Wheeler are probably the eatliest to show
the unboundedness of a wave solution for Gy, = 0.
Nevertheless, due to their inadequate understanding
of the equivalence principle, they did not reach a valid
conclusion. It is ironic that they therefore criticized
Rosen who came to a valid conclusion, though with
dubious reasoning.

Robinson and Trautmanl®l dealt with a metric of
spherical “gravitational waves” for G, = 0. How-
ever, their metric has the same problem of unbound-
edness and having no dynamic source connection. Their
metric has the following form:

ds?> = 2dpde + (K - 2Hp - 2m/p)do® - p’p~*{[d§
+ (8q/0m)do]* + [dn +(dq/0E)da]*}

where m is a function of ¢ only, p and q are functions
of o, §, and m,

H = p'0p/0c + p&°p’q/0&0n - pq O°p"/0EOn
and K is the Gaussian curvature of the surface p = 1,
G = constant,

K = p%(@/08* + &*/on’)ln p
For this metric, the empty-space condition GHV =0
reduces to

&q/0E + &q/on = 0, and FK/E2
+ PK/on* = 4p™2(0/06 - 3H)m
To see this metric has no dynamic connection, let us
examine their special case as follows:
ds? = 2dpdo - 2Hdo? - d€2 - dn?, and
OH/0p = O°H/0E + PH/on* = 0

This is a plane-fronted “wave”®! derived from metric

(282)

(28b)

(28¢)

(29)

(30)

(28) by specializing
p=1+ (& +n)K(o)/4
substituting
p=A7+A'p,0=_5,E=NE n=2A"N,q=2A'q (31b)

(31a)

where A is constant, and taking the limit as A tends to
zerol®l. Although (30) is a Lorentz metric, there is a
singularity on every wave front where the homogene-
ity conditions
PH/OE = °H/om® = 0
are violated®®). Obviously, this is also incompatible
with Einstein’s notion of weak gravity®l. A problem
in current theory is its rather insensitivity toward theo-
retical self-consistency!®»256570],

(32)

To illustrate an invalid source and an intrinsic non-
physical space, consider the following metric,

ds®> = du dv + Hdu’ - dx, dx, where H = h (u)x, x, (11)
where u = ct - z, v =ct + z, x = x1 and y = x9, hj;(u)
> 0, and hj; = h;;®. This metric satisfies the harmonic
gauge. The cause of metric (11) can be an electromag-
netic plane wave and satisfies the Einstein equation.
However, this does not mean that causality is satisfied
although metric (11) is related to a dynamic source. It
violates the principle of causality because it involves
unphysical parameters, the choice of origin of the co-
ordinates.

Apparently, Penrose® over-looked the physical re-
quirements, in particular the principle of causality.
Being unbounded, metric (11) is also incompatible with
the calculation of light bending and classical electro-
dynamics. These examples confirm that there is no
bounded wave solution for (1) although a “time-de-
pendent” solution need not be logarithmic divergent?.
However, in defense of the errors of the 1993 Nobel
Committee for Physics, ‘t Hooft!" comes up with a
bounded time-dependent cylindrical symmetric solu-
tion as follows:

WY(t,t) = Aj':"d(pe“"“"“““’2 33)

where 4 and o (> 0) are free parameters. For simplic-
ity, take them to be one. |¥| is everywhere bounded.
He claimed that, at large values for t and r, the station-
ary points of the cosine dominate, so that there are
peaks at r+ = |t|. And this is a packet coming from r =
o0 at t = —00 bouncing against the origin at t ~ 0, and
moving to r = o again at t —> o0,

Now, consider that x = r cos ¢ in a coordinate system
(t, @, z). Then, ‘t Hooft™ claimed that his solution, ¥
is obtained by superimposing plane wave packets of
the form exp [- a(x - »?] rotating them along the z axis
over angle @, so as to obtain a cylindrical solution.
Note that since the integrand exp[- a(z - r cosp)?] =
exp[- a(t - )7, there is no rotation along the z axis. The
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function exp[- a(t - x)?] is propagating from x = —© to
X = 00 as time t increases.

Note, however, that in a superimposition the integra-
tion is over a parameter of frequency ® unrelated to
the x-axis; whereas the solution (33) is integrated over
¢(x, y). Since, (33) is a combination that involves the
coordinate @ (x, ), it is not a superimposition of plane
waves propagating along the x-axis. Furthermore, the
integration over all angles ¢ is a problem that would
violate the requirement of the idealization because it
requires that the plane wave is valid over the whole x-
y plane. Thus, function (33) is not valid as an idealiza-
tion in physics.

Therefore, in solution (33), two errors have been made,
namely: 1) the plane wave has been implicitly extended
beyond its physical validity, and 2) the integration over
do is a process without a valid physical justification.
Moreover, it has been shown that there are no valid
sources that can be related to solution (33)["2. Thus,
the principle of causality is also violated.

ERRORS OF THE MATHEMATICIANS, SUCH
AS ATIYAH, PENROSE, WITTEN, AND YAU

While physicists can make errors because of inadequate
background in mathematics, one may expect that pro-
fessional mathematician would help improve the situ-
ation. However, this expectation may not always be
fulfilled. The reason is that a mathematician may not
understand the physics involved and thus not only he
may not be helpful, but also could make the situation
worse. A good example is the cooperation between
Einstein and Grossman. They even wrote a joint pa-
pet, but from which it is clear that they did not un-
derstand each other. However, the situation could be
worse if they had misled each other.

A bad example is the participation in physics by math-
ematician Roger Penrose. He was misled by imperfect
understanding of the physical situation that E= mc® is
always valid and thus he believed that all the coupling
of energy-momentum tensors must have the same sign.
Then his mathematical talent comes up with the space-
time singularity theorems without realizing such an
assumption is invalid in physics. Then, he and Hawk-
ing convince the physicists that such singularities must
exist and general relativity is not valid in the micro-
scopic scale. Thus, an accompanying error is that physi-
cists failed to see that the photons must include gravi-
tational components since photons can be converted
into mass™7, This is supported by the experimental
fact that the meson T, can decay into two y rays. How-
ever, the electromagnetic energy alone cannot be equiva-
lent to mass because the trace of the massive energy-

momentum tensor is non-zero.

Another example is the positive energy theorem of
Schoen and Yaul”™. From the free encyclopedia
Wikipedia, the contributions of Professor Yau were
summarized as follows:

“Yau’s contributions have had a significant impact on
both physics and mathematics. Calabi—Yau manifolds
are among the ‘standard tool kit” for string theorists
today. He has been active at the interface between ge-
ometry and theoretical physics. His proof of the posi-
tive energy theorem in general relativity demon-
strated—sixty years after its discovery—that Einstein’s
theory is consistent and stable. His proof of the Calabi
conjecture allowed physicists—using Calabi-Yau
compactification—to show that string theory is a vi-
able candidate for a unified theory of nature.”

Thus, it was claimed that Yau’s “proof “ of the posi-
tive energy theoreml®™ in general relativity would
have profound influence that leads to even the large
research efforts on string theory. Based on his proof,
it was claimed that Einstein’s theory is consistent and
stable. This would be in a direct conflict with the fact
the there is no dynamic solution for the Finstein equa-
tion.

Now, let us examine their theorem that would imply
that flat space-time is stable, a fundamental issue for
the theory of general relativity. Briefly, the positive
mass conjecture says that if a three-dimensional mani-
fold has positive scalar curvature and is asymptotically
flat, then a constant that appears in the asymptotic
expansion of the metric is positive. A crucial assump-
tion in the theorem of Schoen and Yau is that the so-
lution is asymptotically flat. However, since the
Einstein equation has no dynamic solution, which is
bounded, the assumption of asymptotically flat im-
plies that the solution is a stable solution such as the
Schwarzschild solution, the harmonic solution, the
Kerr solution, etc.

Therefore, Schoen and Yau actually prove a trivial re-
sult that the total mass of a stable solution is positive.
Note that since the dynamic case is actually excluded
from the consideration in the positive energy theo-
rem, this explains why it was found from such a theo-
rem that Einstein’s theory is consistent and stable. This
is, of course, misleading.

Due to inadequacy in pure mathematics among physi-
cists, the non-existence of dynamic solutions for the
Einstein equation was not recognized. So, Yau could
only assume the existence of a bounded dynamic solu-
tion. Thus, the positive energy theorem of Schoen and
Yau also continues such an error. Although Yau may
not have made errors in mathematics, their positive
energy theorem produced not only just useless but
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also misleading results in physics. Yau failed to see this
problem of misleading since he has not attempted to
find explicit examples to illustrate their theorem. Nev-
ertheless, in awarding him a Fields Medal in 1982, this
theorem 1is cited as an achievement. Moreover, E.
Witten made the same mistake in his alternative
proofl”, but that was also cited as an achievement for
his Fields Medal in 1990. Apparently, Atiyah also failed
to understand this issuel.

In fact, Yaul™ and ChristodoulouP”! make essentially
the same error of defining a set of solutions that actu-
ally includes no dynamic solutions. Their fatal error is
that they neglected to find explicit examples to sup-
port their claims. Had they tried, they should have
discovered their errors. Note that Yau has wisely
avoided committing himself to the errors of
Christodoulou & Klainerman, by claiming that his
eatlier interest has changedP.
able to see that the binary pulsars experiment of Hulse
& Taylor not only confirms that there is no dynamic
solution but also that the signs of coupling constants
are not uniquePl. In fact, Yau has made the same et-
rors of Penrose and Hawkingl®l, and implicitly uses
the invalid assumption of unique sign in his positive
energy theorem of 1981. Nevertheless, Prof. Yau is a
good mathematician as shown by his other works al-
though he does not understand physics well. Since the
Einstein equation must be modified for a dynamic case,
their positive energy theorem is also irrelevant to phys-
ics just as the space-time singularity theorem of Penrose
and Hawking.

The facts that AtiyahPY Hilbert®, Witten, and Yau
were unable (or neglected) to identify their errors,
would misleadingly created a false impression that
Einstein, the Wheeler School, and their associates did
not make errors in mathematics.

However, he was un-

CONCLUSIONS AND DISCUSSIONS

In general relativity, the existence of gravitational wave
is a crucial test of the field equation. Thus, an impor-
tant question is: what does the gravitational field of a
radiating asymptotically Minkowskian system look
like? Without experimental inputs, to answer this ques-
tion would be very difficult.

Bondi®® commented, “it is never entirely clear whether
solutions derived by the usual method of linear ap-
proximation necessarily correspond in every case to
exact solutions, or whether there might be spurious
linear solutions which are not in any sense approxima-
tions to exact ones.” Thus, in calculating gravitational
waves from the Finstein equation, problems are con-
sidered as due to the method rather than inherent in

the equations.

Physically, it is natural to continue assuming Einstein’s
notion of weak gravity is valid. (Boundedness, though
a physical requirement, may not be mathematically
compatible to a nonlinear field equation. But, no one
except perhaps Gullstrand™, expected the nonexistence
of dynamic solutions.) The complexity of the Einstein
equation makes it very difficult to have a closed form.
Thus, it is necessary that a method of expansion should
be used to examine the problem of weak gravity.

A factor which contributes to this faith is that VHGyy,,
= 0 implies VHT(m)},W = 0, the energy-momentum
conservation law. However, this is only necessary but
not sufficient for a dynamic solution. Although the
1915 equation gives an excellent description of plan-
etary motion, including the advance of the perihelion
of Mercury, this is essentially a test-particle theory, in
which the reaction of the test particle is neglected. Thus,
the so obtained solutions are not dynamic solutions.
As pointed out by Gullstrand™ such a solution may
not be obtainable as a limit of a dynamic solution.
Nevertheless, Einstein, Infeld, and Hoffmann®¥ incor-
rectly assumed the existence of a bounded dynamic
solution and deduced the geodesic equation from the
1915 equation. Recently, Feymann®* made the same
incorrect assumption that a physical requirement
would be unconditionally applicable.

The nonlinear nature of Einstein equation certainly
gives surprises. In 1959, FockP"! pointed out that, in
harmonic coordinates, there are divergent logarithmic
deviations from expected linearized behavior of the
radiation. After the discovery that some vacuum solu-
tions are not logarithmic divergent™ the inadequacy
of Einstein’s equation was not recognized. Instead, the
method of calculation was mistaken as the problem.
To avoid the appearance of logarithms, Bondi et al.¥
and Sachsl" introduced a new approach to gravitational
radiation theory. They used a special type of coordi-
nate system, and instead of assuming an asymptotic
expansion in the gravitational coupling constant K, they
assume the existence of an asymptotic expansion in
inverse power of the distance r (from the origin where
the isolated source is located in r < a, which is a posi-
tive constant). The approach of Bondi-Sachs was clari-
fied by the geometrical ‘conformal’ reformulation of
Penrosel”l.

However, this approach is unsatisfactory, “because it
rests on a set of assumptions that have not been shown
to be satisfied by a sufficiently general solution of the
inhomogeneous Einstein field equation!™.” In other
words, this approach provides only a definition of a
class of space-times that one would like to associate to
radiative isolated systems, neither the global consis-
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tency nor the physical appropriateness of this defini-
tion has been proven. Moreover, perturbation calcu-
lations have given some hints of inconsistency between
the Bondi-Sachs-Penrose definition and some approxi-
mate solution of the field equation.

There are two other main classes of approach: 1) the
post-Newtonian approaches (1/c expansions) and the
post-Minkowskian approaches (K expansions). The
post-Newtonian approaches are fraught with serious
internal consistency problems!” because they often lead,
in higher approximations, to divergent integrals. The
post-Minkowskian approach is an extension of the lin-
earization, one may expect that there are some prob-
lems related to divergent logarithmic deviationsP’l.
Moreover, it has unexpectedly been found that
perturbative calculations on radiation actually depend
on the approach chosenPl.

Mathematically, this non-uniqueness shows, in disagree-
ment with (3), that a dynamic solution of (1) is un-
bounded. Also, based on the binary pulsar experiments,
it is proven that the Einstein equation does not have
any dynamic solution even for weak gravityPl. This
long process is, in part, due to theoretical consistency
that was inadequately considered®?*731. Moreovert, it
was not recognized that boundedness of a wave is cru-
cial for its association with a dynamic source. These
inadequacies allowed acceptance of unphysical “time-
dependent” solutions as physical waves (Sections 5 &
7).

In view of impressive observational confirmations, it
seemed natural to assume that gravitational waves
would be produced. Moreover, gravitational radiation
is often considered as due to the acceleration in a geo-
desic alonel®™#3. It is remarkable that in 1936 Einstein
and Rosen®" are the first to discover this problem of
excluding the gravitational wave. However, without
clear experimental evidence, it was difficult to make
an appropriate modification.

From studying the gravity of electromagnetic waves,
it was also clear that Einstein equation must be modi-
fied®"*1. However, the Hulse and Taylor binary pul-
sar experiments, which confirm Hogarth’s 1953 con-
jecturel®%! are indispensable for verifying the neces-
sity of the anti-gravity coupling in general relativity?*].
In addition to experimental supports, the Maxwell-
Newton Approximation can be derived from physical
principles, and the equivalence principle also implies
boundedness of a normalized metric in general relativ-
ity®l. A perturbative approach cannot be fully estab-
lished for (1) simply because there are no bounded
dynamic solutions, which must, owing to radiation,
be associated with an anti-gravity coupling.
Nevertheless, Christodoulou and Klainerman[®%

claimed to have constructed bounded gravitational (un-
verified) waves. Obviously, their claim is incompat-
ible with the findings of others. Furthermore, their
presumed solutions are incompatible with Einstein’s
radiation formula and are unrelated to dynamic
sources®”*l. Thus, they simply have mistaken an
unphysical assumption (which does not satisfy physi-
cal requirements) as a wave®!®l. Thus, their book serves
as evidence that the Princeton University can be wrong
just as any human institute*.

Within the theoretical framework of general relativ-
ity, however, the gravitational field of a radiating as-
ymptotically Minkowskian system is given by the
Maxwell-Newton Approximation?l. Note that, for the
dynamic case, the Maxwell-Newton Approximation
is a linearization of the up-dated modified Einstein
equation of 1995, but not the Einstein equation, which
has no bounded dynamic solution. With the need of
rectifying the 1915 Einstein equation established, the
exact form of t(g),y in the equation of 1995 updatel’l
is an important problem since a dynamic solution that
gives an approximation for the perihelion of Mercury
remains unsolved!. Moreover, the updated equation
shows that the singularity theorems prove only the
breaking down of theories of the Wheeler-Hawking
school, but not general relativity (see Section 6). This
analysis suggests that further confirmation of this ap-
proximation is expected.

However, the Wheeler School still has strong influ-
ence; and even the MIT open course Phys, 8,033 and
Phys, 8.962 is currently filled with their errors®l. Due
to the influences of the Wheeler School, general rela-
tivity is believed as effective only for large scale prob-
lems. Thus, the study for the applications of general
relativity on earth and understanding material struc-
ture is neglected or ignored®l. For example, there
are numerous experiments on the weight reduction of
a charged capacitor®#1. However, due to the biased
view and ignorance of editors of journals such as the
Physical Review, and Nature, these experiments are
unfairly regarded as due to errors. These experiments
are important because they support the charge-mass
interaction that is a crucial for the unification of elec-
tromagnetism and gravitation®'%l. It shows also that
the speculation of unconditional E = mc”"2 is invalid®.
In conclusion, general relativity remains to be com-
pleted.

A basic problem is that just as in Maxwell’s classical
electromagnetism, there is also no radiation reaction
force in general relativity. Although an accelerated
massive particle would create radiation, the metric ele-
ments in the geodesic equation are created by particles
other than the test particle. In other words, not only
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the field equation, but also the equation of motion
must be modified™. Now, it should be clear that
gravitation is not a problem of geometry as the Wheeler
School advocated. Moreover, general relativity is not
yet complete, independent of the need of unification.

APPENDIX A: PERLICK’S BOOK REVIEW ON
“THE GLOBAL NONLINEAR STABILITY OF
THE MINKOWSKI SPACE”

After it has been shown that there is no bounded dy-
namic solution for the Einstein equation?!] in 1996
Perlick published a book review in ZFM, pointing
out that Christodoulou and Klanerman have made
some unexpected mistakes, and their proof is difficult
to follow, and suggested their main conclusion may
be unreliable. However, to many readers, a suggestion
of going through more than 500 pages of mathematics
is not a very practical proposal. The review is as fol-
lows:

“For Einstein’s vacuum field equation, it is a difficult
task to investigate the existence of solutions with pre-
scribed global properties. A very interesting result on
that score is the topic of the book under review. The
authors prove the existence of globally hyperbolic,
geodesically complete, and asymptotically flat solutions
that are close to (but different from) Minkowski space.
These solutions are constructed by solving the initial
value problem associated with Einstein’s vacuum field
equation. More precisely, the main theorem of the
book says that any initial data, given on R, that is
asymptotically flat and sufficiently close to the data
for Minkowski space give rise to a solution with the
desired properties. In physical terms, these solutions
can be interpreted as space-times filled with source-
free gravitational radiation. Geodesic completeness
means that there are no singularities. At first sight,
this theorem might appear intuitively obvious and the
enormous amount of work necessary for the proof
might come as a surprise. The following two facts,
however, should caution everyone against such an at-
titude. First, it is known that there are nonlinear hy-
perbolic partial differential equations (e.g., the equa-
tion of motion for waves in non-linear elastic media)
for which even arbitrarily small localized initial data
lead to singularities. Second, all earlier attempts to find
geodesically complete and asymptotically flat solutions
of Einstein’s vacuum equation other than Minkowski
space had failed. In the class of spherically symmetric
space-time and in the class of static space-times the ex-
istence of such solutions is even excluded by classical
theorems. These facts indicate that the theorem is, in-
deed, highly non-trivial. Yet even in the light of these

facts it is still amazing that the proof of the theorem
fills a book of about 500 pages. To a large part, the
methods needed for the proof are rather elementary;
abstract methods from functional analysis are used only
in so far as a lot of I? norms have to be estimated.
What makes the proof involved and difficult to fol-
low is that the authors introduce many special math-
ematical constructions, involving long calculations,
without giving a clear idea of how these building-
blocks will go together to eventually prove the theo-
rem. The introduction, almost 30 pages long, is of little
help in this respect. Whereas giving a good idea of the
problems to be faced and of the basic tools necessary
to overcome each problem, the introduction sheds no
light on the line of thought along which the proof
will proceed for mathematical details without seeing
the thread of the story. This is exactly what happened
to the reviewer.”

“To give at least a vague idea of how the desired solu-
tions of Einstein’s vacuum equation are constructed,
let us mention that each solution comes with the fol-
lowing: (a) a maximal space-like foliation generalizing
the standard foliation into surfaces t = const. in
Minkowski space; (b) a so-called optical function u,
i.e. a solution u of the eikonal equation that general-
izes the outgoing null function u = r - t on Minkowski
space; (¢) a family of “almost conformal killing vector
fields on Minkowski space. The construction of these
objects and the study of their properties require a lot
of technicalities. Another important tool is the study
of “Bianchi equations” for “Weyl tensor fields”. By
definition, a Weyl tensor field is a fourth rank tensor
field that satisfies the algebraic identities of the con-
formal curvature tensor, and Bianchi equations are
generalizations of the differential Bianchi identities.”
“In addition to the difficulties that are in the nature of
the matter the reader has to struggle with a lot of un-
necessary problems caused by inaccurate formulations
and misprints. E.g., “Theorem 1.0.2” is not a theorem
but rather an inaccurately phrased definition. The prin-
ciple of conservation of signature” presented on p. 148
looks like a mathematical theorem that should be
proved; instead, it is advertised as an “heuristic prin-
ciple which is essentially self-evident.” For all these
reasons, reading this book is not exactly great fun.
Probably only very few readers are willing to struggle
through these 500 pages to verify the proof of just one
single theorem, however interesting.”

“Before this book appeared in 1993 its content was
already circulating in the relativity community in form
of a preprint that gained some notoriety for being ex-
tremely voluminous and extremely hard to read. Un-
fortunately, any hope that the final version would be
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easier to digest is now disappointed. Nonetheless, it is
to be emphasized that the result presented in this book
is very important. Therefore, any one interested in
relativity and/or in nonlinear partial differential equa-
tions is recommended to read at least the introduc-
tion.”
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the existence of bounded radiative solutions.

After discussions with me for about a month, P.
Mortrison of MIT went to Princeton University to see
J. H. Taylor to discuss their calculations on the binary
pulsars. As expected, Taylor failed to give a valid justi-
fication!®l.

Hogarth™ conjectured that, for an exact solution of
the two-particle problem, the energy-momentum ten-
sor did not vanish in the surrounding space and would
represent the energy of gravitational radiation.

The possibility of having an anti-gravity coupling was
formally mentioned by Pauli®®. In a different way,
such a possibility was actually first mentioned by
Einstein in 1921. On the other hand, Hawking and
Penrose had implicitly assumed, in their singularity
theorems, the impossibility of an anti-gravity cou-
pling!™.

This explicit reinterpretation of Einstein’s equivalence
principle (based on Pauli’s misinterpretation that
Einstein objected) as just the signature of Lorentz met-
ric was advocated by Synge™ eatlier and Friedman™
later.

A traditional viewpoint of the Physics Department of
MIT is that general relativity must be understood in
terms of physics. However, after P. Morrison past away,
the Wheeler School started to take over in 2006, and
thus many errors of the Wheeler School appear in MIT
open courses Phys. 8.033 and Phys. 8.962®]. However,
the instructors failed to see these.

[100]

[101]

The time-tested assumption that phenomena can be
explained in terms of identifiable causes is called the
principle of causality. This is the basis of relevance for
all scientific investigations*l.

Michael Francis Atiyah was in the 2011 Selection Com-
mittee for the Shaw Prize in Mathematics Sciences that
awarded Christodoulou a half prizeP. Atiyah has been
president of the Royal Society (1990-1995). Since 1997,
he has been an honorary professor at the University of
Edinburgh (Wikipedia). Understandably, some jour-
nals avoid criticizing him.

[102] John L.Friedman; Divisional Associate Editor of

[103]

[104]

[105]
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Phys.Rev.Letts., officially claims “The existence of lo-
cal Minkowski space has replaced the equivalence prin-
ciple that initially motivated it.” 17 Feb. (2000).

Max Planck once remarked; ‘A new scientific truth
does not triumph by convincing its opponents and mak-
ing them see the light, but rather because its opponents
eventually die, and a new generation grows up that is
familiar with it.” Fortunately, it seems, mathematics is
an exception to his rule.

Many of my teachers were graduates of Princeton Uni-
versity; such as Prof. A.J.Coleman, who pointed out
errors of Einstein, and Prof. I.Halperin, who was my
advisor for my M.Sc. & Ph.D. in mathematics.

The charge-mass interaction has the potential to ex-
plain the NASA’s Space-Probes Pioneer Anomaly sat-
isfactorily®. So far, this problem has not gotten a good
valid explanation yet. Thus, this charge-mass interac-
tion would be very important for astrophysics in the
futurel:92],

Ludwig D.Faddeev; the Chairman of the Fields Medal
Committee, wrote (‘On the work of Edward Witten’):
‘Now I turn to another beautiful result of Witten —
proof of positivity of energy in Einstein’s theory of
gravitation. ... — a formidable problem solved by Yau
and Schoen in the late seventy as Atiyah mentions,
‘leading in part to Yau’s Fields Medal at the Warsaw
Congress’.’
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