Heavy metal content in some therapeutically important medicinal plants

B. Rajeshwari Morabad, B.R. Kerur*, M.T. Lagare, S. Anilkumar
Department of Post-Graduate Studies and Research in Physics, Gulbarga University, Gulbarga-585106, Karnataka, (INDIA)
E-mail: kerurbrk@yahoo.com
Received: 18th September, 2009; Accepted: 28th September, 2009

INTRODUCTION

Medicinal plants are prescribed by traditional healers for diseases like as common cold, malaria, ulcers and infection across the world since ancient times[1,5]. In the recent years, the use of the phytoterapics has been focused as safer and more congenial to the human body. Medicinal plants come into preparation of various modern drugs or even have been used as the principal source of raw materials for conventional drugs[2]. In the development countries, these plants are easily found in local market. Non-prescription phytoterapics drugs are in the mixtures of medicinal plants to use and the industry promises more quick effects[3]. There is a great interesting in trace and essential elements composition in the medicinal science; it is believed that the great majority of elements act as key components of essential enzyme systems or vital biochemical functions.

In this work the Atomic Absorption Spectrophotometer (AAS) technique was used to multi-elemental determination of Fe, Mn, Zn and Cu elements in the ethanolic extract and parts of medicinal plants (leaves, seeds, fruits). The quantitative inorganic profile these parts of plants showed a different distribution for each part. This information could be used to identify which part of plants is more effective for theoretic use.

MATERIALS AND METHODS

Medicinal plants were collected from different area of Karnataka (See TABLE 1) and were iden-
tified with the literature data available and also from experts of this region. The samples were cleaned with the help of AR grade reagents and chemicals. One gram of the plant sample was ashed with (10:1:4) HNO₃ + HCl + H₂SO₄ acid mixture in a Teflon beaker. A 0.5ml HCl acid was added in curved beaker placed on sand bath. The sample mixture was heated until a clear solution was obtained. After removing the cover, the mixture was evaporated until drying. The residue was extracted by 50 ml 2 N HCl and the extract was diluted by slightly with water and filtered through Whatman filter paper No.1. The filtered acid extract was diluted with deionised water and measured by using GBC 932 AA Unicom Flame Atomic Absorption Spectrometer (AAS) with digital and direct readout concentration and air-acetylene burner Single element hollow cathode lamps (Pye Unicom) for Cu, Mn, Fe, Zn were used at the recommended currents for each studied element.

In atomic emission spectroscopy, the metal is excited from the energy imparted to it thermally by the flame and then as it returns to the ground state it emits radiation at a characteristic wavelength. This radiation is then isolated by a monochromatic and subsequently its intensity is directly proportional to the concentration of the element present.

Data analysis

The results were analyzed statistically for each plant the experiment were repeated thrice mean values, standard error (mean±SD) and correlation significance calculated using SPSS package 12 version.

RESULTS AND DISCUSSION

Selection of the plants used for this study was based on their extensive use in traditional medicinal system of India. The botanical as well as common name of the plant, part used the place of collection, major metallic constituents and medicinal uses are listed in TABLE 1. As is evident from the literature, efforts were made to collect the samples from different ecological zones comprising of Gulbarga Sandur and Kappathagudda, the medicinal uses of these plants in Ayurveda cures a number of ailments including hypertension, neurological disorders, asthma, immuno-stimulants, antibacterial, menstrual disorders, rheumatism and urinary tract infection etc. Since the major elements are either direct or indirect involvement in biological activity, analysis of four major elements namely Fe, Zn, Mn and Cu was performed in a total of five plant samples collected from different ecological regions.

Iron

The average content of Fe range between 1370.37±1.17 ppm/100g (TABLE 2) in the estimated five medicinal plants. The highest amount of Fe is recorded in the *Catharanthus roseus* (1370.37±1.17 ppm). It is also observed that the variation of iron content plants collected from different geographical area. The results clearly indicated that the plants collected from Sandur and Kappadagudda

TABLE 1: Medicinal plants collected from Gulbarga, Sandur and Kappattgudda and their medicinal uses

<table>
<thead>
<tr>
<th>Botanical name</th>
<th>Common names</th>
<th>Part used</th>
<th>Major elements</th>
<th>Medicinal uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocimum sanctum</td>
<td>Holy Basil</td>
<td>Leaves</td>
<td>Fe, Cu, Mn,</td>
<td>Bad coughs, skin diseases, gastric disorders children, hepatic disorders, piles, eye drops and fevers.</td>
</tr>
<tr>
<td>Catharanthus roseus</td>
<td>Vinca</td>
<td>Leaves</td>
<td>Al, Cd, Fe, Co</td>
<td>Diabetic, cancer, human pathogenic strains and diarrhea</td>
</tr>
<tr>
<td>Trigonella foenum-</td>
<td>Methi</td>
<td>Seeds</td>
<td>Mn, Zn, Cu, Mn</td>
<td>Neuralgia or pneumonia, facial fever, infection of the sciatic pain at buck, skin irritations and mouth ulcers</td>
</tr>
<tr>
<td>graecum L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azadirachta indica</td>
<td>Neem</td>
<td>Leaves</td>
<td>Na, Zn Cu, Mn,</td>
<td>Asthma, fever, jaundice, depressed unhappy emotional state heart problem, stomach,</td>
</tr>
<tr>
<td>A.Juss.</td>
<td></td>
<td></td>
<td>Fe</td>
<td>dysentery and indigestion</td>
</tr>
<tr>
<td>Aegle marmelos</td>
<td>Bael</td>
<td>Leaves</td>
<td>Ca, P, Na, K,</td>
<td>Anemia, sinusitis, indigestion, fever, cough, teeth, mouth problems and ear pain problems</td>
</tr>
<tr>
<td>Roxb.</td>
<td></td>
<td></td>
<td>Zn, Cu, Mn and</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION

Selection of the plants used for this study was based on their extensive use in traditional medicinal system of India. The botanical as well as common name of the plant, part used the place of collection, major metallic constituents and medicinal uses are listed in TABLE 1. As is evident from the literature, efforts were made to collect the samples from different ecological zones comprising of Gulbarga Sandur and Kappathagudda, the medicinal uses of these plants in Ayurveda cures a number of ailments including hypertension, neurological disorders, asthma, immuno-stimulants, antibacterial, menstrual disorders, rheumatism and urinary tract infection etc. Since the major elements are either direct or indirect involvement in biological activity, analysis of four major elements namely Fe, Zn, Mn and Cu was performed in a total of five plant samples collected from different ecological regions.

Iron

The average content of Fe range between 1370.37±1.17 ppm/100g (TABLE 2) in the estimated five medicinal plants. The highest amount of Fe is recorded in the *Catharanthus roseus* (1370.37±1.17 ppm). It is also observed that the variation of iron content plants collected from different geographical area. The results clearly indicated that the plants collected from Sandur and Kappadagudda

TABLE 1: Medicinal plants collected from Gulbarga, Sandur and Kappattgudda and their medicinal uses

<table>
<thead>
<tr>
<th>Botanical name</th>
<th>Common names</th>
<th>Part used</th>
<th>Major elements</th>
<th>Medicinal uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocimum sanctum</td>
<td>Holy Basil</td>
<td>Leaves</td>
<td>Fe, Cu, Mn,</td>
<td>Bad coughs, skin diseases, gastric disorders children, hepatic disorders, piles, eye drops and fevers.</td>
</tr>
<tr>
<td>Catharanthus roseus</td>
<td>Vinca</td>
<td>Leaves</td>
<td>Al, Cd, Fe, Co</td>
<td>Diabetic, cancer, human pathogenic strains and diarrhea</td>
</tr>
<tr>
<td>Trigonella foenum-</td>
<td>Methi</td>
<td>Seeds</td>
<td>Mn, Zn, Cu, Mn</td>
<td>Neuralgia or pneumonia, facial fever, infection of the sciatic pain at buck, skin irritations and mouth ulcers</td>
</tr>
<tr>
<td>graecum L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azadirachta indica</td>
<td>Neem</td>
<td>Leaves</td>
<td>Na, Zn Cu, Mn,</td>
<td>Asthma, fever, jaundice, depressed unhappy emotional state heart problem, stomach,</td>
</tr>
<tr>
<td>A.Juss.</td>
<td></td>
<td></td>
<td>Fe</td>
<td>dysentery and indigestion</td>
</tr>
<tr>
<td>Aegle marmelos</td>
<td>Bael</td>
<td>Leaves</td>
<td>Ca, P, Na, K,</td>
<td>Anemia, sinusitis, indigestion, fever, cough, teeth, mouth problems and ear pain problems</td>
</tr>
<tr>
<td>Roxb.</td>
<td></td>
<td></td>
<td>Zn, Cu, Mn and</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION

Selection of the plants used for this study was based on their extensive use in traditional medicinal system of India. The botanical as well as common name of the plant, part used the place of collection, major metallic constituents and medicinal uses are listed in TABLE 1. As is evident from the literature, efforts were made to collect the samples from different ecological zones comprising of Gulbarga Sandur and Kappathagudda, the medicinal uses of these plants in Ayurveda cures a number of ailments including hypertension, neurological disorders, asthma, immuno-stimulants, antibacterial, menstrual disorders, rheumatism and urinary tract infection etc. Since the major elements are either direct or indirect involvement in biological activity, analysis of four major elements namely Fe, Zn, Mn and Cu was performed in a total of five plant samples collected from different ecological regions.

Iron

The average content of Fe range between 1370.37±1.17 ppm/100g (TABLE 2) in the estimated five medicinal plants. The highest amount of Fe is recorded in the *Catharanthus roseus* (1370.37±1.17 ppm). It is also observed that the variation of iron content plants collected from different geographical area. The results clearly indicated that the plants collected from Sandur and Kappadagudda

TABLE 1: Medicinal plants collected from Gulbarga, Sandur and Kappattgudda and their medicinal uses

<table>
<thead>
<tr>
<th>Botanical name</th>
<th>Common names</th>
<th>Part used</th>
<th>Major elements</th>
<th>Medicinal uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocimum sanctum</td>
<td>Holy Basil</td>
<td>Leaves</td>
<td>Fe, Cu, Mn,</td>
<td>Bad coughs, skin diseases, gastric disorders children, hepatic disorders, piles, eye drops and fevers.</td>
</tr>
<tr>
<td>Catharanthus roseus</td>
<td>Vinca</td>
<td>Leaves</td>
<td>Al, Cd, Fe, Co</td>
<td>Diabetic, cancer, human pathogenic strains and diarrhea</td>
</tr>
<tr>
<td>Trigonella foenum-</td>
<td>Methi</td>
<td>Seeds</td>
<td>Mn, Zn, Cu, Mn</td>
<td>Neuralgia or pneumonia, facial fever, infection of the sciatic pain at buck, skin irritations and mouth ulcers</td>
</tr>
<tr>
<td>graecum L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azadirachta indica</td>
<td>Neem</td>
<td>Leaves</td>
<td>Na, Zn Cu, Mn,</td>
<td>Asthma, fever, jaundice, depressed unhappy emotional state heart problem, stomach,</td>
</tr>
<tr>
<td>A.Juss.</td>
<td></td>
<td></td>
<td>Fe</td>
<td>dysentery and indigestion</td>
</tr>
<tr>
<td>Aegle marmelos</td>
<td>Bael</td>
<td>Leaves</td>
<td>Ca, P, Na, K,</td>
<td>Anemia, sinusitis, indigestion, fever, cough, teeth, mouth problems and ear pain problems</td>
</tr>
<tr>
<td>Roxb.</td>
<td></td>
<td></td>
<td>Zn, Cu, Mn and</td>
<td></td>
</tr>
</tbody>
</table>
samples contains higher amount of iron content. Due to the soil contains high of Mn and Fe contents, while plants collected from Gulbarga samples indicated lesser amount of Fe. The variation due to climatic variability and presence of mining activities in both areas, Fe element is important hemoglobin in component responsible for oxygen transport in human body\cite{44}. The normal tolerable range of intake of iron 15-120mg/day. Iron is undoubtedly the most important nutrient and its deficiency is cause of several disorders\cite{1,5}. The concentration of Fe in tulsi Ocimum sanctum and neem Azadirachta indica were 129 and 355mg/g respectively by[6,7,11,12,13,16,19], reported that the highest present of Fe is estimated in purgnlaria tomentosa 292mg/g.

Zinc

The average content of Zn ranged between 240.69±2.22 ppm/100g (TABLE 3) in the estimated five medicinal plants. The highest amount of Zn is recorded in the Trigonella foenum-graecum (240.69±2.29 ppm). It is also observed that the plant collected from different ecological area i.e., Gulbarga, Sandur and Kappathagudda, the deposition of mineral elements varies from place to place. However, the plants obtained from Sandur and Kappathagudda contains high amount of Zn content. While, Gulbarga plants samples contains lesser amount of Zn content (TABLE-3). It is clear from the above results accumulation of high amount of Zn content in Sandur and Kappathagudda, the soil contains rich amount of minerals due to mining area and it is a second abundant element in estimated five medicinal plants. The physiological activities of the plant influence the Zn absorption and the interaction with many elements like Fe, Mn and Cu, affects Zn uptake. Zn is the component of more than 270 enzymes\cite{8,9}, and its deficiency causes many physiological disorders. Besides, it is responsible for stimulating growth of epidermal and epithelial cells. The normal per day intake of Zn level is 12-15 mg/day. The similar kind of reports in medicinal plants has been reported by[6,7,11,12,13,16,19].

Manganese

The average content of Mn ranged between 030.10±5.66 ppm/100g (TABLE 4) in the estimated five medicinal plants. The lowest amount was recorded in Aegle marmelos (030.10±5.66). From the results it is clear that variation among the different area samples the highest content of Mn was detected in plants collected from Kappathagudda followed by Sandur. So, due to soil contains high amount of Mn. Similarly the least amount of Mn was recoded in the plants samples estimated from the Gulbarga. Mn is an important electrolyte also responsible for proper bones and liver function. It also works as co-factor in more than 300 metabolic reactions\cite{14}. Normal daily intake of Mn is 2-8 mg/day\cite{15,18}. Estimated the manganese from seven medicinal plants, in Acacia ehrenbergiana 339 mgkg\(^{-1}\) highest amount were detected. According to\cite{7,12,16,19}, most of the plants examined plants are safe.

TABLE 2 : Estimation of Iron from medicinal plants collected from Gulbarga, Sandur and Kappathagudda (ppm/100g)

<table>
<thead>
<tr>
<th>Plants name</th>
<th>Iron (in ppm)</th>
<th></th>
<th>Average mean of Iron</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gulbarga</td>
<td>Kappathagudda</td>
<td>Sandur</td>
</tr>
<tr>
<td>Aegle marmelos</td>
<td>0974.00±3.36</td>
<td>0815.83±2.58</td>
<td>0195.00±0.57</td>
</tr>
<tr>
<td>Azadirachta indica</td>
<td>1099.20±0.35</td>
<td>1437.83±0.59</td>
<td>1574.10±3.25</td>
</tr>
<tr>
<td>Catharanthus roseus</td>
<td>1495.20±3.80</td>
<td>1097.53±0.54</td>
<td>0315.43±2.45</td>
</tr>
<tr>
<td>Ocimum sanctum</td>
<td>1095.80±3.47</td>
<td>1093.40±3.28</td>
<td>1855.40±2.85</td>
</tr>
<tr>
<td>Trigonella foenum-graecum</td>
<td>0636.63±3.38</td>
<td>0675.90±0.45</td>
<td>1087.10±0.52</td>
</tr>
</tbody>
</table>

TABLE 3: Estimation of Zinc from medicinal plants collected from Gulbarga, Sandur and Kappathagudda (ppm/100g)

<table>
<thead>
<tr>
<th>Plants name</th>
<th>Zinc (in ppm)</th>
<th></th>
<th>Average mean of zinc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gulbarga</td>
<td>Kappathagudda</td>
<td>Sandur</td>
</tr>
<tr>
<td>Aegle marmelos</td>
<td>034.73±0.88</td>
<td>076.60±1.40</td>
<td>251.56±2.85</td>
</tr>
<tr>
<td>Azadirachta indica</td>
<td>111.56±0.12</td>
<td>202.96±0.54</td>
<td>216.86±3.36</td>
</tr>
<tr>
<td>Catharanthus roseus</td>
<td>274.50±1.85</td>
<td>251.56±2.85</td>
<td>196.03±1.63</td>
</tr>
<tr>
<td>Ocimum sanctum</td>
<td>123.60±2.40</td>
<td>076.60±0.30</td>
<td>009.46±0.28</td>
</tr>
</tbody>
</table>

TABLE 4 : Estimation of Manganese from medicinal plants collected from Gulbarga, Sandur and Kappathagudda (ppm/100g)

<table>
<thead>
<tr>
<th>Plants name</th>
<th>Manganese (in ppm)</th>
<th></th>
<th>Average mean of Manganese</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gulbarga</td>
<td>Kappathagudda</td>
<td>Sandur</td>
</tr>
<tr>
<td>Aegle marmelos</td>
<td>076.33±0.60</td>
<td>102.80±0.57</td>
<td>124.60±0.35</td>
</tr>
<tr>
<td>Azadirachta indica</td>
<td>204.60±0.57</td>
<td>157.43±3.00</td>
<td>242.30±0.33</td>
</tr>
<tr>
<td>Catharanthus roseus</td>
<td>048.36±0.88</td>
<td>605.50±2.56</td>
<td>032.93±1.20</td>
</tr>
<tr>
<td>Trigonella foenum-graecum</td>
<td>098.60±0.57</td>
<td>086.83±0.38</td>
<td>118.00±0.38</td>
</tr>
<tr>
<td>Ocimum sanctum</td>
<td>023.00±0.30</td>
<td>026.00±0.57</td>
<td>041.30±0.57</td>
</tr>
</tbody>
</table>
Copper

The average content of Cu ranged between 43.40±1.46 ppm/100g (TABLE 5) in the estimated five medicinal plants. The least amount was recorded in *Aegle marmelos* (43.40±1.46). It is also observed that the plant collected from different ecological area i.e., Gulbarga, Sandur and Kappathagudda. The mineral elements is varies from place to place. However, the Cu content is higher in samples estimated from Sandur and Kappathagudda plants obtained from Sandur and Kappathagudda. While, Gulbarga samples least content were recorded. Cu is the main constituent of the bone, connective tissue, brain, heart, and many other body organs[17]. Normal daily intake of copper is 2-5 mg/day. The elements Cu are some of the macronutrients, which are essential to human health and nutrition[15,18] reported that range of cu contents in 50 medicinally important leafy materials growing in India[7,12,16,19].

TABLE 5: Estimation of Copper from medicinal plants collected from Gulbarga, Sandur and Kappathagudda (ppm/100g)

<table>
<thead>
<tr>
<th>Plants name</th>
<th>Copper (in ppm)</th>
<th>Average mean of Copper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocimum sanctum</td>
<td>176.70±1.76</td>
<td>273.40±6.00</td>
</tr>
<tr>
<td>Catharanthus roseus</td>
<td>069.16±0.40</td>
<td>087.00±0.49</td>
</tr>
<tr>
<td>Trigonella foenum-graecum</td>
<td>211.70±0.15</td>
<td>098.30±2.45</td>
</tr>
<tr>
<td>Azadirachta indica</td>
<td>059.13±0.39</td>
<td>048.10±1.22</td>
</tr>
<tr>
<td>Aegle marmelos</td>
<td>015.00±0.47</td>
<td>078.06±0.26</td>
</tr>
</tbody>
</table>

CONCLUSION

The present study reviles that all the plants selected for elemental study shows their presence but vary in concentration and their presence in also enteritis to cure many of the disease. The plants taken for the study may be contains light concentration but it is not toxic and do not effects on physiological function of the body. Pharmacological studies are necessary enclose it. This study indicates that some of these plants accumulate certain elements, and this property is exploited by the use of these plants for medicinal purposes in addition to their bioactive secondary metabolites constituent. The elucidation of element specification in these plants helps interpret the therapeutic actions and may help in designing chemically pure medication. Caution, however, should be exercised in using any medicinal plant without establishing a picture of its element contents.

ACKNOWLEDGEMENTS

The authors are wishing to express their deep thanks to B.R. Kerur Department of physics, Gulbarga University, Gulbarga for providing facilities to carryout the study.

REFERENCE

