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ABSTRACT KEYWORDS
Inthispaper, anew objective function of genetic algorithmsbased onlocal Parameter optimization;
variable weight synthesizing is proposed to improve the imperfect selec- Local variableweight
tion of performance indicator and unclear weight distribution in objective synthesizing;
function of controller parameters optimization. Using both error integral Genetic algorithms;

indicators and eigenvalues of the system calculated by local variableweight Internal model control.
synthesizing as a parameters optimization objective function to achieve
the purpose that eigenvalues of the system are all in a reasonable range
and error integral values are smaller as well. Compared with traditional
objective function, the modified objective function is more comprehen-
sive, flexible and open. At last, applying it to the parameters optimization

of internal model control and the simulation results have shown its effec-

tiveness and superiority.

INTRODUCTION

Duetothecontroller parameters affect thevalid-
ity and reliability of thecontrol agorithm directly, thus
parameter determination of the controller isone of the
sgnificant stepsof different control agorithm design.
The purpose of controller parametersoptimizationis
to makethe system performance optimal under cer-
tainguidelines.

At present, theerror integral performanceindica
tors are often used a one as the obj ective function of
controller parameter optimization¥, suchas|ISE, IAE
andITAE. Thiskind of objectivefunction can only make
thesystem to achieveacertain effect with minimum er-
ror integral indicators, but cannot restraintheeigenval-
uesof thesystem. So therewill besomevitd eigenval-
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uesof the system arein aunreasonablerange. There-
fore, someliteraturesintroduced eigenvauesof thesys-
tem(?3, such asrisetime and overshoot, into objective
function by constant weight synthesizing to solvethe
multi pleindicator optimizations. However, theerror in-
tegral indicatorscannot reach the minimum by thisob-
jectivefunction.

Inthispaper, variablewe ght synthesizingisintro-
duced into the obj ectivefunction of genetic algorithm,
and gpplied it to the parametersoptimization of interna
model control. Thedesign of the objectivefunctionis
nolonger just using error integral indicator or only use
the eigenvalues of the system, but combining two
complementary error integral indicators and system
elgenvaueswhich calculated by local variableweight

gynthesizing.
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GENETICALGORITHMS

Theoptimization agorithm can bedividedinto ex-
act dgorithmsand heuristic dgorithms. Exact dgorithm
needsto conduct athorough search of the sol ution space
toobtainagloba optima solution, anditisnot suitable
for complex modd . Heurigticagorithmisoneof intdlli-
gent optimization agorithms. Itismainly devel oped by
thevariousmechanismsof naturd organisms.

Thegeneticagorithmwhichissmulating nature of
biologica evolutionisagloba searchagorithmand it
bel ongsto heurigtic optimization algorithm. Besides, ge-
neticagorithmisglobaly convergent and pardld com-
puting, and it does not need auxiliary information. In
addition, genetic algorithm usesthefitnessfunctionto
eval uate the sol ution during the optimization process.
Then, through evol ution operations continueto search
good fitnessindividua sand end up with find the opti-
mal solution. Therefore, accordingto thedesired sys-
tem performanceindicatorsto determinethefitnessfunc-
tion of controller parameter optimization hassgnificant
meaning. Theflow chart of basic geneticalgorithmis
illustratedin Figure 1.

Start

Coding and producing initial
population
Calculating 1 ndividual fitness
evaluation

d
<

A 4

Selection , crossover and mutation
v
Calculating 1 ndividual fitness
evaluation of evolved populations

Is generation
complete?

End

Figurel: Theflow chart of basic geneticalgorithm

Thegeneticagorithm start with populationwhichis
aninitial set of random solutions. Eachindividual of
populationiscalled achromosome. Thegenerationsis
theresultsof the chromosomesevol vethrough succes-
sveiterations. Intheperiod of each generation, thefit-
ness function is used to eval uate the chromosomes.
Some chromosomesare chosento create the next gen-
eration according theva ues of fitnessfunction after the
operation of selection, crossover and mutation. Se-
lection reflect the principle of ‘Survival of thefittest.’
Some solutionsare selected while othersarediminated.
Crossover causesastructured with thepossibility that
‘good’ sol utions can generate ‘better’ ones. Mutation
isto restorelost or unexploresgenetic materia intothe
population to prevent the premature convergence of
the GA to suboptimal solutions.

These processeswill lead to thenew generationis
more adaptivethan the previous generation. After some
generations, thebest individua of thelast populations
after decoded i sthe approximate optimal solution of a
problem.

TRADITIONAL OBJECTIVE FUNCTION

Error integral indicators

Becausetheerror integral indicatorsarethetime
integral of theerror inthetransition process, they are
compositeindicators. Thus, they canreflect thegenerd
meritsof theadjustment processcomprehensvely, and
theresulting valuesarethe smdler the better. Currently
used error integral indicatorsareasfollowing:

Integrated absoluteerror (IAE):

Jye =] e(®)lat )
When using |AEto evauate systems, thetransient
response of the system is good, but the overshoot of
thedynamic responseisoftentoo largeand the adjust-
ment processislong.
Integral of squareerror (1SE):

g = J'; e’(t)dt )
Transient response of the system isfast by used

ISE to evdluate systems. It focusoninhibiting largeer-

rors, but the syslemwill haveoscillation generally. Be-

sides, overshoot islarge and stability isnot very good.
Integrated timeabsoluteerror (ITAE):
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Jirne = I:t|e(t)|dt ©)
Normally, ITAE hasbetter control of thedeviation
inlate period of transient responseand hassmall over-
shoot. Inaddition, thesystemisrelatively stable.
Fromtheaboveanalyss, it can be seenthat differ-
ent error integral indicator hasdifferent emphasesto
evaluate system. Thus, just choose asingleindicator
can not get reasonabl e regul ation time, overshoot and
Sahility.
Individual indicators

Individual indicators mean that using the output
egenva uesof thesystem asindicatorsof objectivefunc-
tion, such asovershoot, risetimeand settlingtime. These
eigenvalues of the system can be sdlected according to
the specific control system and control requirements®.
But different eigenval ues can only make one kind of
performance of the system tend to be optimal while
without givingthe best overal performanceof thesys-
tem. Moreover, we can select multiple eigenvalues
through wei ght synthesi zing to optimizevarious perfor-
mances of asystem at the sametime.

MODIFIED OBJECTIVE FUNCTION
BASED ON LOCAL VARIABLE
WEIGHT SYNTHESIZING

Fromtheaboveanayss, we can seethat error in-
tegral indicatorsused aone asthe objective function
cannot make specific requirementsfor theeigenval ues
of system, whilethe eigenva ues of system used alone
astheobjectivefunction cannot get overall optimiza-
tion. Therefore, this paper presentsamethod to com-
bine these two kinds of indicators through variable
weight syntheszing.

Variableweght synthesizingisanimprovement on
thebas sof constant weight synthesizing. It nolonger
usesweighted-average method to eva uate results, but
to reduceor increasethe weights of some evaluation
parametersunder certain principles. Therefore, results
aremorereasonable. Literature® givesthefundamen-
tal of variableweight synthesizing. Thedifferencefrom
constant weight synthesizing and variableweight syn-
thes zingisthat variablewei ghtscomprehensivetaking
into account the relative importance of the basic ele-

mentsand thetarget val ue changeswiththebasicele-
ments. Theaxiomatic definitionsof punishment variable
weight, incentivevariableweight and mixed variable
weight arereported inliteraturd ™. The punishment vari-
ableweight meansthe overall evaluation valueof sys-
tem would rapidly reduce when the score oneindicator
istoo low. In other words, the punishment variable
weight has sensitivereaction for reduction of indica-
tors. Onthecontrary, incentive variablewe ght has sen-
sitivereaction for increase of indicators. Mixed vari-
ableweight hasapunitiveeffect for apart of thefactors
whilehasanincentiveeffect for other factors. An axi-
omatic definition of local variableweight synthesizingis
proposedin literature®. It reward or punishthefactors
when they areabove or below acertain standard. The
loca variableweight synthesi zing applied tothe optimal
design of thecontrol systeminliterature®. Literature?
introducesthe variableweight theory into fuzzy com-
prehensive eval uation process. Thereseach showsthat
variablewe ght makeseva uation method of imfprmeation
system more scitific and practice. Literatureé*¥ intro-
duces avariable weight factor to adecision-making
model to achieve different preferences according to
requirements. And thismethod can beusedinamulti-
criteriadecision-making process.

Inthispaper, thevariableweight synthesizingintro-
duced to the objective function of genetic agorithm,
and appliesit to the parameter optimization of interna
model controller.

Subjectivefunction J;

By andyzingthedifferent focusof integral of square
error (ISE) and integrated time absoluteerror (ITAE)
can be seen that they have complementary effectsin
theeva uation system. Therefore, the proposed method
inthispaper usesthesetwo indicators simultaneously
through constant weight synthesi zing. Thepecificform
isasfollows:

J,=af e(t)dt+B[ tje(t)dt @)
wherea and ff aretwo artificial constant weight that
reflect therelativeimportance of twoindicatorsin deci-
son-making, a thesametimemeset therequirement that
a+tp=1

Thesetwo error integral indicatorscan all reflect
theoverdl performance of system, but have different
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emphasis. Thus, constant weight isused for thesetwo
error integral indicators because their weightsdo not
need to changewith thevalueof indicators.

Subjectivefunction J,

Error integrd indicatorsare used asobject function
can evauatetheoverall performance system, but can-
not make specific requirementsfor theeigenvalues of
system. Inthispaper, risetimet, and overshoot c% are
used asaset of variables of performanceindicator by
variableweight synthesizing to eval uate system. Spe-
dificaly, accordingtothevauesof risetimet and over-
shoot 6% in different time, the weights of them are
changed. The score of system evaluationisthe higher
the better, but the value of objectivefunction of con-
troller parametersoptimizationisthe smaller the better.
So their determinations of both punishmentsand re-
wards areexactly the opposite. Theweightswould be
rewarded when the values of risetime and overshoot
arelower thanacertainleve, whilewhenthey arehigher
than acertain level theweightswould be punished.

Duetodifferent dimensionsof risetimeand over-
shoot, thefirst step is depending on specific control
system to determine areasonabl e variablerange, then
normalized risetime and overshoot to x, and x, which
belongto[0,1]. Thejthitem of local variableweight

model @ isgivenby:
JJ(Xl,XZ,...'Xm)=M
> o.5.(x,) ©)

Wheresj(x]) isthelocal variableweight vector of X and
o] istheconstant weight of x.
Function of local variableweight vector¥is:

AT_lxj +1x €[0,a]

S| (X %0 X)) =4 A X €[a, 8] ©
AL Al
-, X; + a, VX ela,,]]

wherea , a,and A areconstantsbelongto[0,1]. Aon

behalf of the degree of rewards and punishments, and
the smaller theva uethe greater the degree of reward
and punishment. [0, a,] istherangeof reward. [a,, & ]
istherange of constant weight. [a,, 1] istherange of
punishment.

BioTechnology —

After theaboveanalysis, thesubjectivefunction J,
by used risetime and overshoot asaset of variablesis
obtainedas.

_ 055, (X)X, + @35, (X,)X,
T als (x)+ s, (x,) @)
Thestepsof determinefitnessfunction

2

(1) Select performanceindicatorsasvariablesof the
objectivefunction. This paper selectstheerror in-
tegral indicators ISE and ITAE as a set of vari-
ables, and then selectsrisetimet, and overshoot
0% asanother set of variables.

(2) Determining the allowable ranges for variables
which have different dimensionless, and then nor-
maizedthem.

(3) Determining the constant weight of each variable.
Inthispaper, a, B, o° and »° areneeded to deter-
mine

(4) Determining the parametersof thelocal variable
weight function, includinga,, a,and A.

(5) Theobjectivefunctionsare:

J,=af e(t)dt+B[ tje(t)dt )

_ 0)281 (Xl)Xl + 0)252 (Xz )Xz

2T 0%, (x,) + 0%, (X,) ©)

(6) Atnessfunctionis

P

1+J, 1+,

According to thedifferent control requirementsof
control systems, the objectivefunctionsaredesignedin
this paper can select ranges of variables, constant
welghtsand parametersof local variableweight func-
tionartificidly. Therefore, theresultsof parameter opti-
mization are closer to theided requirements.

(10)

SIMULATIONANALYSIS

Simulation for FOPDT process
Consider thefollowing FOPDT process:

—4s

e

C=511

Interna modd controlleris:

5s+1

GIMC(S) = As+1
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where 4 isthe parameter of controller which needed

optimization. Thestepsfor determinefitnessfunction

areasfollowing:

(1) Select performanceindicatorsasvariablesof the
objectivefunction. Thispaper selectstheerror in-
tegral indicators ISE and ITAE as a set of vari-
ables, and then selectsrisetimet_and overshoot
0% asanother set of variables.

(2) Allowablerangesof therisetimet andtheover-
shoot 6% are determined ast, < 20s; 6% < 20%.

(3) Normdlized processing:

t :[0,20] - x,:[0,1]; 6%:[0,20%] — X, : [0,1].

(4) Congantweightsare:
a=05,4=05 v, =05, »,=0.5.

(5) Parametersof thelocd variableweaght functionare:
a,=034a=07A=03

(6) Locd varidbleweight functionis:

;
-3% +1x, €[0,0.3]
0.3 x; €[0.3,0.7]

7 4
§Xj —5, Xj € [07,1]

S (X:I.’ Xz) =

(7) Opjectivefunctionsare:
J,=05[ e (t)dt+05[ "tje(t)[dt
_ 05s,(x,)X, +0.55,(x,)X,
27 05s,(x,)+05s,(x,)
(8) Htnessfunctionis

1 1
f= +
1+J, 1+,
Comparethe proposed method to different fitness
functionsof geneticagorithmto verify itseffectiveness
and superiority. Theothersfitnessfunctionsare:

1 1 _ 1
f=— f,= f =
' 1+ISE’ > 1+ITAE’ 1+J,
- s 1
f1405x,+05x,’ ° 147,

At a perfect matching of a process plant and
model, theresponses of FOPDT process after con-
troller parameter optimization by genetic agorithm for
aunit step are shownin Figure 2. When process plant
mismatches with process model, the responses of

FOPDT processafter controller parameter optimiza-
tion by genetic agorithmfor aunit step are shownin
Figure3.

Simulation for SOPDT process
Consider thefollowing SOPDT process:

1 —4s
Gs+ (751 -

Theresponses of SOPDT process after controller
parameter optimization by genetic agorithmfor aunit
step when model matched are shownin Figure4.

TheFigure5 shown theresponsesof SOPDT pro-
cessafter controller parameter optimization by genetic
dgorithmfor aunit step, when process plant mismatches
with processmodd.

Accordingtothesmulation resultsof both FOPDT
process and SOPDT process in the case of model
meatching and model mismatching, wecan givethecon-
clusonsasfollows:

GP(S):

|| U i PP PP
17| PO A S 4
)] . ]
o i '
T ERRRG——. . = F——— e — §
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timefs
Figure2: Sep responsesof FOPDT processafter controller
parameter optimization by different fitnessfunctionsof ge-
neticalgorithm (matched model)
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Figure3: Sep responsesof FOPDT processafter controller
parameter optimization by different fitnessfunctionsof ge-

netic algorithm (mismatched model)

s BioTechnology

An Tudian Yourual



1100

FULL PAPER o

Genetic algorithms based on local variable weight synthesizing and its application

BTAIJ, 8(8) 2013

1

L B et e T R s —
8 : Y 2 ? i E
g 06 : 7 /o I U e SN et —
g- ' 1 d ' ' ' ' =
0 o
i ——
& PR
& 02
: Y 14
el 5
: : : ; : : { | — tproposed
02 I I I | | | { e
0 2 4 6 8 10 12 14 1% 18 20

time/s
Figure4: Sepresponsesof SOPDT processafter controller
parameter optimization by different fitnessfunctionsof ge-
neticalgorithm (matched model)

TS 0 o SR N T—

0.6

slep response!
i
1
1
i

71 P ;

02 7

; = f-proposed ||

1] 10 20 30 40 50 60 70
time/s

Figure5: Sep responsesof SOPDT processafter controller
parameter optimization by different fitnessfunctionsof ge-
netic algorithm (mismatched model)

(1) Thesystem has speed response, large overshoot
and instability when using | SE d one asthe objec-
tivefunction. Whenusing ITAE aloneastheobjec-
tivefunction, the speed of responseisd ower than
usingISE, andthevaduesof ISEand ITAE arelarger,
but it has smaler overshoot. Using thesetwo indi-
cators at the same time asthe obj ective function
through constant wei ght synthesi zing has better ef-
fect than using oneof them alone. However, using
theerror integral indicatorsaoneasobjectivefunc-
tion would lead to theva ue of overshoot isbeyond
the control requirements.

(2) Whenrisetimet and overshoot c% areused asa
set of variables of objective function by constant
weight synthesizing, the system hassmaller over-
shoot and smooth reactionin both matched model
and mismatched mode!. But thevaluesof ISE and
ITAE arelarger. The system achieves abetter bal-
ance between risetime and overshoot after using
local variableweight. Besides, thevalues of ISE
and ITAE al decrease.

(3) Theobjectivefunction proposed by thispaper has
abetter result of parameter optimization. It keeps
therisetimeand overshoot intherange of control
requirement while has smaller values of I1SE and
ITAE.

CONCLUSIONS

Aiming at solving theimperfect performanceindi-
cator selection and unclear weight distributionin ob-
jectivefunction of controller parametersoptimization,
this paper proposes amodified objective function of
genetic agorithmsbased onlocal variableweight syn-
thesizing and applyingit to parametersoptimization of
interna modd control. Eigenvauesof sysemand error
integral indicatorsare both usedin the proposed ob-
jectivefunction. Inaddition, introduced local variable
weight to cal culaterisetime and overshoot asaset of
indicators. Thesimulation resultsdemonstrate that com-
pared with traditional objectivefunctionthenew one
achievesagood ba ance between different eigenva ues
of system and theerror integral indicators. Meanwhile,
the designed obj ective functions can chooseranges of
variables, constant weightsand parametersof locd vari-
ableweight function according to different control re-
quirementsof control systems. Thus, theresultsof pa
rameter optimization arecloser totheided requirements
and enhancethe openness of optimization agorithm.
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