
Full Paper

Exact solutions of the one-dimensional, two-dimensional, and
three-dimensional Ising models

Igor A.Stepanov
Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield

Building, Mappin Street, Sheffield, S1 3JD, (UK)
E�mail : i.stepanov@sheffield.ac.uk; igstepanov@yahoo.com
Received: 21st February, 2012 ; Accepted: 21st March, 2012

Magnetic materials;
Nanostructures;

Magnetic properties;
Magnetic structure;
Phase transitions.

KEYWORDSABSTRACT

According to the traditional solutions, there is no magnetisation in the
one-dimensional Ising model in the absence of external magnetic field. It is
shown that there is a mistake within them. In them, local order of spins was
not taken into account and the partition function and the correlation
function were calculated wrongly. In this paper, that mistake is improved
and a new solution is presented. According to it, there is ferromagnetism in
that model. Analogously, solutions of the two-dimensional and three-
dimensional Ising models are obtained.
 2012 Trade Science Inc. - INDIA

INTRODUCTION

There is a well-known result in physics of phase
transitions: the one-dimensional Ising model in the
absence of external magnetic field has no magnetic phase
transition. It has been a paradox since the predictions
of Weiss� mean field theory are independent of lattice
dimensionality and hence the linear chain is predicted
to undergo a phase transition at non-zero temperature.[1-

3] However, it is shown that there are mistakes in the
traditional solutions in the calculation of the correlation
function and the partition function. Another method for
solving this problem is proposed. Using it, one can show
that the one-dimensional Ising model displays
spontaneous magnetisation which decreases
asymptotically to zero with the temperature. The new
method is applied to the two-dimensional and three-
dimensional problems and exact solutions are obtained.
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They also produce magnetisation which decreases
asymptotically to zero with the temperature.

THEORY

Lest us consider the one-dimensional Ising model
in the absence of external magnetic field.[1] The
Hamiltonian of a chain of N atoms is of the form
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where the spins s
i
 are one-dimensional unit vectors

assuming only the discrete values +1 and -1 and J
i
 is the

interaction energy between spins situated on sites i and i
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Where 
kT
1

 .

For a chain of 2 spins the Hamiltonian will be

211

^

ssJÇ  (3)

The partition function is
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Now we can calculate the nearest-neighbour cor-
relation function for a chain of two spins:
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where summation is over spins s
1
 and s

2
. In Ref. 1,

using a more tedious derivation it was shown that for a
chain of N spins

   kk Jtanh1Ã  (6)

Indeed, the expression for  1Ãk  does not depend
on the number of spins in the chain.
In Ref. 1, the two-spin correlation function for a chain
of N spins was calculated:
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where the symbol {s} denotes the N-fold summation
of Eq. (2). Here r is the distance between spins, in units
of a lattice constant. It equals
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Now we can find the temperature at which long-
range order sets in, i.e. the temperature at which the
two-spin correlation function falls off sufficiently slowly
with the interspin distance r that the magnetisation be-
comes non-zero. The squared normalized zero-field
magnetisation is:[1]
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From Eq. (8) we see that the hyperbolic tangents are
less than one and hence the products approach zero in
the limit of infinite r. The linear chain therefore displays
zero spontaneous magnetisation for all non�zero values
of the temperature. Nevertheless, there is a mistake in
the proof given by Eqs. (8) and (9). Consider a chain
consisting of 100 spins, J

k
 = J for all k, and   99.01Ãk  .

Its squared magnetisation from Eqs. (8) and (9) is 2 �
0.37. Now let us assume that J

50
 = 0. Then from Eqs.

(8) and (9), 2 = 0. It is a wrong result. In reality the
chain will split into two chains with 2 � 0.61 each. It
proves that the previous solution is wrong.

There is a flaw in the proof given by Eqs. (8) and
(9). Let us assume theoretically that the correct solu-
tion of the Ising model exists and, according to it, in the
chain 90% of the spins are up and 10% are down.
(Stanley in Ref. 1 presented the same argument: �Sup-
pose the contrary, namely that there exists a phase tran-
sition with T

c
 > 0. Then for some T < T

c
 let us �flip� half

the chain to assume an opposite polarity.�) Then Eqs.
(8) and (9) predict that magnetisation of this chain is
zero.

Eq. (8) is of the form
  ...ssssssrÃ 433221k  (10)

where every factor is less than unity. Imagine an infinite
chain of vectors which is constructed by the following
rule: orientation of a vector depends on that of its left
neighbour: if the neighbour is up then with the probabil-
ity 90% the vector is up. If the neighbour is down then
with the probability 9 0% the vector is up. Eq. (10)
predicts that the long range correlation function for this
chain is zero, which is wrong.

Consider an infinite Ising chain with a strong corre-
lation, for example,   99.01Ãk  .It means that almost all
neighbour spins are aligned so as the central one, k.
Two cases are possible. The first one: a chain with about
99% of the spins turned up and only about 1% of them
turned down. Such chain will possess magnetisation ac-
cording to the definition of the correlation function, al-
though the previous solution results in no magnetisation
in it. The second case is: the chain consists of domains,
each one consists in average of 50 spins. In some of the
domains the spins are turned up, and in others they are
turned down. The net magnetisation is zero. If

  999.01Ãk   then the chain consists of domains of about
500 spins, etc. It is already a new result. If there is no
magnetisation at all, then such chain has equal number
of spins up and down, and they are oriented randomly,
that is its correlation   01Ãk  . It contradicts the defini-

tion of the problem:   99.01Ãk  and, from Eq. (6),

  01Ãk  only at J
k
 = 0 or T  .
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One can suppose that the first case takes place be-
cause  1Ãk  is identical for every k, and the directions
of spins must be also identical for all k  j (j is the index
of spins directed down, they are about 1% of the total
spin number) due to symmetry of the problem.

The magnetisation of an Ising chain will be equal to
that of an averaged elementary cell. The elementary cell
consists of a spin and its nearest neighbour. The
magnetisation of the chain is,
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here < J
i
> is an average interaction energy. In the uni-

form case, J
i
 = J, the squared normalized zero-field

magnetisation is

 Jtanh2
 (12)

And

mula is valid for all dimensions. Mean field theory pro-
duces the following equation:

  Jztanh (15)

If we denote the magnetisation of an elementary cell of
the crystal lattice by M

i
 then the magnetisation of the

two- and three-dimensional Ising lattices is
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where N
cells

 is the number of the elementary cells. In the
uniform case of equal J, the normalized magnetisation 
is equal to that of one elementary cell. For that case, 
for hexagonal lattice, square lattice and simple cubic
lattice can be written as
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respectively. To calculate  1Ãk , one must find the par--
tition function of the elementary cell. The energy of the
hexagonal lattice is
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Here the first term on the right hand side is the con-
tribution of the first elementary cell, the second term is
that of the adjacent cell, etc. The Hamiltonian of one
cell in a lattice differs from that of a single triangle by
division by 2 because every term in the numerator is
taken twice ( 322 ssJ and 232 ssJ in Eq. (20)). For the cu-
bic lattice, it differs from that of a single cube by divi-
sion by 4. The partition function of the hexagonal lattice

Figure 1: Dependence of the spontaneous magnetisation per
spin  on temperature T for the one-dimensional Ising model,
Eq. (13), J = 1.

   5.0Jtanh  (13)

The plot of this function is given in Figure 1. The
magnetisation decreases from unity at T = 0 and as-
ymptotically tends to zero with the temperature. Mean
field theory predicts that the Ising model acquires mag-
netism at cTT  [1, 3] where T

c
 can be found from

zJkTc  (14)

Here z is the number of nearest neighbours. This for-
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in the uniform case is:

   ...ZZZ...EEEexpZ 321
}s{

321hex  (21)

where Z
1
, Z

2
, Z

3
, ... are the partition functions of the

elementary cells. The partition function of a cell in the
hexagonal lattice in the uniform case is:

)J5.0exp(6)J5.1exp(2Z i  (22)

Now let us find the nearest-neighbour correlation func-
tion between spin 1 and spin 2,  1Ã1 , it equals all other
nearest-neighbour correlation functions:
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where E
1
, E

2
, E

3
, ... are defined in Eq. (20). So, this

correlation function is
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and the magnetisation is:
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The plot of this function is given in Figure 2.
Using this method initially developed in Ref. 1, one

can easy show that the long range correlation function is

    r1k rÃrÃ  (26)

It tends to zero with r and, therefore, according to
Ref. 1, the hexagonal two-dimensional lattice possesses
no spontaneous magnetisation. This result contradicts
the traditional solution for the two-dimensional case and
is another evidence that the proof proposed in Ref. 1
(Eqs. (8), (9)) is untenable.

Analogously, one can show that the partition func-
tion of a cell in the square lattice in the uniform case is:

12)J2cosh(4Z i  (27)

the nearest-neighbour correlation function is
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Again, the long range correlation function is   r1 rÃ

and the magnetisation of this lattice must be zero ac-
cording to Ref.1. The plot of this is shown in Figure 2.

Figure 2 :  Dependence of the spontaneous magnetisation per
spin  on temperature T for the two-dimensional hexagonal
lattice (solid line) and two-dimensional square lattice (dashed
line) Ising models, Eqs. (25) and (29), J = 1. The both curves
almost coincide

It practically coincides with that of Eq.(25). The
magnetisation decreases asymptotically to zero with the
temperature from the maximum value at T = 0.

Using the same method, one can find the partition
function of a cell in the simple cubic lattice for the uni-
form case:
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The nearest-neighbour correlation function is
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and the magnetisation is:
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Figure 3 : Dependence of the spontaneous magnetisation per
spin  on temperature T for the three-dimensional Ising model,
Eq. (32), J = 1.

The plot of this result is shown in Figure 3. rations, and, therefore, are wrong.

CONCLUSIONS

Earlier it has been thought that the Ising model,
unlike the mean field theory, predicts no phase transition
for a linear chain system in the absence of external
magnetic field. It is shown that this traditional result is
wrong because it is based on a wrong calculation of the
correlation function or taking redundant terms in the
partition function. Another solution is obtained which
does predict magnetisation. It acquires its maximum
value at T = 0 and decreases asymptotically to zero
with the temperature. It has been proven that the solution
of the one-dimensional case is exact. Using this method,
exact solutions of the two-dimensional and three-
dimensional Ising models are obtained. They also acquire
their maximum values at T = 0 and decrease
asymptotically to zero with the temperature. It is shown
that there is a mistake in the former solutions of the
two- and three-dimensional Ising models.
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Ising proposed another solution of the one-dimen-
sional Ising model.[4] He considered a chain of N spins
and used the expression

Zln
H

kT



 (33)

where H is the external magnetic field and Z is the par-
tition function. In the partition function, the summation
is over all configurations with N

1
 spins up and N � N

1

spins down, where N
1 
changes from 0 to N. However,

if   99.01Ãk   and the case 1 described above takes
place, then N � N

1
 is of the order 1% and configura-

tions with N � N
1
 >> 1% are impossible and may not

be taken into account.
If one knows  1Ãk one can calculate exactly the

number of spins up and down in the infinite chain. In the
calculation of the partition function only the configura-
tions with that number of spins up and down must be
taken. As the directions up and down have equal rights,
one must take also the configurations with N

1
 spins down

and N � N
1 
spins up. Such partition function will be

exact and calculations with it will produce correct re-
sult. Other configurations are impossible and may not
be taken into account in calculation of Z. In Refs. 1, 3 -
12, other solutions of the one-dimensional, two-dimen-
sional, and three-dimensional Ising models were given.
They also use Eq. (33) and summation over all configu-


