Trade Science Inc.

ISSN : 0974 - 7494 Volume 6 | ssue 3

Nano Science and Nano Technology

A Tndéian Journal

—= U] Peper

NSNTAIJ, 6(3), 2012 [118-122]

Exact solutions of the one-dimensional, two-dimensional, and
three-dimensional Ising models

Igor A.Stepanov
Department of M aterials Scienceand Engineering, Univer sity of Sheffield, Sir Robert Hadfield
Building, M appin Sreet, Sheffield, S13JD, (UK)
E-mail : i.sepanov@sheffidd.ac.uk; iggtepanov@yahoo.com
Received: 21 February, 2012 ; Accepted: 21% March, 2012

ABSTRACT

According to the traditional solutions, there is no magnetisation in the
one-dimensional Ising model inthe absence of external magneticfield. Itis
shown that thereisamistake within them. In them, local order of spinswas
not taken into account and the partition function and the correlation
function were calculated wrongly. In this paper, that mistake isimproved
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and anew solutionis presented. According to it, thereisferromagnetismin
that model. Analogously, solutions of the two-dimensional and three-

dimensional 1sing models are obtained.
© 2012 Trade Sciencelnc. - INDIA

INTRODUCTION

Thereisawaell-known result in physics of phase
transitions: the one-dimensional Ising model in the
absenceof externd magneticfid d hasno magnetic phase
trangition. It has been aparadox sincethe predictions
of Weiss’ mean field theory areindependent of lattice
dimensionality and hencethelinear chainispredicted
to undergo aphasetransgition a non-zero temperature.*
3 However, itisshown that thereare mistakesin the
traditiond solutionsintheca culation of the correlation
function and the partition function. Another method for
solvingthisproblemisproposed. Usingit, onecan show
that the one-dimensional Ising model displays
spontaneous magnetisation which decreases
asymptotically to zero with thetemperature. The new
method isapplied to the two-dimensional and three-
dimensiond problemsand exact sol utionsareobtained.

They aso produce magnetisation which decreases
asymptotically to zero with thetemperature.

THEORY

Lest usconsder the one-dimensional 1sing model
in the absence of externa magnetic field.! The
Hamiltonian of achain of N atomsisof theform

AN
H=-3Jss,, @)
i1

where the spins s are one-dimensional unit vectors
assumingonly thediscretevaues+1and-1and J isthe
interaction energy between spinssituated onsitesi and i
+ 1. PositiveJ favoursparald and negetive J antiparallel
alignment of the spins. Thepartitionfunctionis

1 1 N-1

2y =2y(3:.9503y0)= 2;1 DRI ;ﬁjisisiu] 2

-1sp=-1 sN=-1
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Whereﬂ=%.

For achain of 2 spinstheHamiltonianwill be

H=-Js5, (©)
Thepartitionfunctionis

Zz=zz(‘]1)= Zl: ieXp(ﬂJlSlSZ)=4COSh(]3Jl) 4

sp==1sp=-1

Now we can cal cul ate the nearest-neighbour cor-
relation function for achain of two spins:
r,= <Slsz> = Z?Z SlszeXp(BJ 15,5, ) = tanh(ﬂ‘] 1) (5)

{s}

where summation isover spinss, and s,. In Ref. 1,
usingamoretediousderivationit wasshownthat for a
chain of Nspins
r,(1)=tanh(®J,) ©)

Indeed, theexpressionfor 1, (1) doesnot depend
onthenumber of spinsinthechain.
InRef. 1, thetwo-spin correlation function for achain
of N spinswascal cul ated:

rk(r)=<Sksk+r>=ZNl%sksk+reXp('§BJisisi+1) )

wherethe symbol { s} denotesthe N-fold summation
of Eq. (2). Herer isthedistance between spins, inunits
of alatticeconstant. It equas

Ly (r ) = tanh(BJk )tanh(B‘] k+1)-"tanh(B‘] k+r—1) =
ﬁtmh(BJk+i—l) ®

Now we can find the temperature at which long-
range order setsin, i.e. thetemperature at which the
two-spin corrdation functionfdlsoff sufficiently dowly
with theinterspin distancer that the magnetisation be-
comes non-zero. The squared normalized zero-field
magnetistionis¥

2

o? o M'\(/IT(Z:H 2)0)2 = limr, (r) ©)

From Eq. (8) we seethat the hyperbolic tangentsare
lessthan oneand hencethe productsapproach zeroin
thelimit of infiniter. Thelinear chain thereforedisplays
zero spontaneous magnetisationfor al non-zerovaues
of thetemperature. Nevertheless, thereisamistakein
the proof given by Egs. (8) and (9). Consider achain
consistingof 100spins, J =Jfordl k,and 1, (1)=0.99.

—= Ful] Paper

Its squared magneti sation from Egs. (8) and (9) isc2~
0.37. Now let usassumethat J_, = 0. Then from Egs.
(8) and (9), o= 0. It isawrong result. In reality the
chainwill split into two chainswith 62~ 0.61 each. It
provesthat the previoussolutioniswrong.

Thereisaflaw inthe proof given by Egs. (8) and
(9). Let usassumetheoretically that the correct solu-
tion of thelsngmode existsand, accordingtoit, inthe
chain 90% of the spins are up and 10% are down.
(Stanley in Ref. 1 presented the same argument: “Sup-
posethecontrary, namely that there existsaphasetran-
stionwithT_>0. Thenfor someT<T _letus‘flip’ half
the chainto assumean oppositepolarity.”) Then Egs.
(8) and (9) predict that magnetisation of thischainis
zexro.

Eq. (8) isof theform
T, (r)=<ss, ><s,5,><5,5, > ... (10)
whereevery factor islessthan unity. Imagineaninfinite
chain of vectorswhichisconstructed by thefollowing
rule: orientation of avector depends on that of itsleft
neighbour: if theneighbour isup then with the probabil -
ity 90% thevector isup. If the neighbour isdown then
with the probability 9 0% the vector is up. Eq. (10)
predictsthat thelong range corrdation functionfor this
chainiszero, whichiswrong.

Condder aninfinitelsng chanwithastrong corre-
|ation, for example, T, (1) = 0.99.It meansthat dmogt al
neighbour spins are aligned so asthe central one, k.
Two casesarepossible. Thefirst one: achain with about
99% of the spinsturned up and only about 1% of them
turned down. Such chainwill possessmagnetisation ac-
cording to thedefinition of thecorrdation function, al-
though the previous sol ution resultsin no magnetisation
init. Thesecond caseis: thechain consistsof domains,
each oneconsistsin average of 50 spins. In someof the
domainsthe spinsareturned up, andin othersthey are
turned down. The net magnetisation is zero. If
T, (1)=0.999 thenthechain consstsof domainsof about
500 spins, etc. Itisaready anew result. If thereisno
magnetisation at al, then such chain hasequa number
of spinsup and down, and they are oriented randomly,
thatisitscorreation ', (1)= 0. It contradictsthe defini-

tion of the problem: r, (1)=0.99and, from Eq. (6),
r,()=oonlyatJ =00rT— .

flano Science and flano Technology

7 e T ot



120

Exact solutions of ising models

NSNTAIJ, 6(3) 2012

Full Paper =

One can supposethat thefirst casetakes place be-
cause I, (1) isidentical for every k, andthedirections
of spinsmust bea soidentical for al k=] (j istheindex
of spinsdirected down, they are about 1% of thetotal
spin number) dueto symmetry of the problem.

Themagnetisation of anlsing chainwill beequd to
that of an averaged e ementary cell. Theelementary cell
consists of a spin and its nearest neighbour. The
magnetisation of thechainis,

> tann(pa,)
— =1
~ N-1
here< J>isan averageinteraction energy. In the uni-
form case, J. = J, the squared normalized zero-field
megnetisationis
o2 =tanh(BJ)
And

2

c (1)

~tanh(p<J, >)

(12)

Q

Figure 1: Dependence of the spontaneousmagnetisation per
spino ontemperatureT for theone-dimensional Isngmodd,
Eq.(13),J=1.

o =[tanh(BJ)** (13)
Theplot of thisfunctionisgiveninFigure 1. The
magnetisation decreasesfrom unity at T =0 and as-
ymptotically tendsto zero with thetemperature. Mean
field theory predictsthat thelsingmodel acquiresmag-

netismat T < T, ¥ whereT_canbefoundfrom
KT, =2J (14)
Here zisthe number of nearest neighbours. Thisfor-
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mulaisvaidfor dl dimensions. Meanfield theory pro-
ducesthefollowing equation:

o =tanh(zBJo) (15)

If wedenote the magneti sation of anelementary cell of
thecrystal lattice by M, then the magnetisation of the
two- andthree-dimensiond Isinglatticesis

Ncells

XM,
M = i=1
cells
whereN_,, isthenumber of theelementary cells. Inthe
uniform caseof equd J, thenormaized magnetisationc
isequal tothat of oneelementary cell. For that case, o
for hexagonal lattice, squarelattice and smple cubic
lattice can bewritten as

(16)

=05

ST
°=T 3 (17)
ST |
°=1"T (18)
and
>0 |
A (19)

respectively. Tocaculate r, (1), onemust find the par-

tition function of theelementary cell. Theenergy of the
hexagondl latticeis

12[=E1+E2+E3+...=
-J.8,S,—J,8,5;—J;S;8,  —J,S,5,—J:S,S;—J,S;S,
+ +...
2 2
Herethefirst term ontheright hand sideisthecon-
tribution of thefirst elementary cell, thesecondtermis
that of theadjacent cell, etc. The Hamiltonian of one
cel inalatticediffersfromthat of asingletriangle by
division by 2 because every terminthe numerator is
takentwice(J,s,s,and J,s.s, inEq. (20)). For thecu-
biclattice, it differsfromthat of asinglecubeby divi-
sion by 4. The partition function of thehexagona lattice

(20)
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intheuniform caseis.

Zhex={Z}:exp[ﬂ(El+E2+E3+...)]=ZIZZZ3... @1

whereZ,, Z,, Z,, ... arethe partition functions of the
elementary cells. Thepartitionfunction of acell inthe
hexagond latticeinthe uniform caseis

Z, = 2exp(1.5J) + 6exp(—0.5J) (22)
Now let usfind the nearest-neighbour correlation func-
tionbetweenspin1and spin2, r,(1), it equasal other
nearest-neighbour corrdation functions:

3 s,s,exp[B(E, +E, +E, +...)]

r)=-1 _ -

hex

2.SiS:EXP(BE,) Y exp(BE,) Y exp(BE;)...

{s} {s} {s}
Z2,2,Z,..

(23)
2. SiS,exp(BE,)
{s}
Zl
whereE , E,, E,, ... are defined in Eq. (20). So, this
corrdationfunctionis

ry(1)=, (1) = 2205)= 2eXp(-05))

~ 2exp(1.53) + 6exp(=0.5J) (24)
andthemagnetisationis
[ exp(153)—exp(-0.53) 1
°s [exp(1.53)+ 3exp(—0.5J)] (25)

Theplot of thisfunctionisgivenin Figure2.
Usingthismethodinitidly developedinRef. 1, one
can easy show that thelong rangecorrdationfunctionis

r,()=[r.0)l (26)

It tendsto zerowith r and, therefore, accordingto
Ref. 1, thehexagona two-dimensiond lattice possesses
no spontaneous magnetisation. Thisresult contradicts
thetraditiona solution for thetwo-dimensiond caseand
isanother evidencethat the proof proposedin Ref. 1
(Egs. (8), (9)) isuntenable.

Andogoudly, onecan show that the partition func-
tion of acdl inthesquarelatticeintheuniform caseis:
Z, =4cosh(2J)+12 27)
the nearest-neighbour correlation function is

—= Fyl] Paper

4sinh(2J)

r,(1)

= 4cosh(23) + 12 (28)
andthemagnetisationis.
[ snh2) T°
97| cosn(23)+ 3 (29)

Agan, thelongrangecorrelationfunctionis [, (r )|
and the magnetisation of thislattice must be zero ac-
cordingtoRef.1. Theplot of thiss isshowninFigure 2.

1
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Figure2: Dependenceof thespontaneousmagnetisation per
spin o ontemperatureT for thetwo-dimensional hexagonal
lattice(solid ling) and two-dimensional squar elattice (dashed
line) Ising models, Egs. (25) and (29), J = 1. Theboth curves
almost coincide

It practicaly coincides with that of EQ.(25). The
magneti sation decreasesasymptoticaly to zerowith the
temperaturefrom themaximumvaueat T=0.

Using the samemethod, one canfind the partition
function of acell inthesmplecubiclatticefor theuni-
form case:

Z, =

4cosh(3J)+ 32cosh(1.5J3) + 60cosh(J) + 96cosh(0.5J) + 64
Thenearest-neighbour corrdaionfunctionis
r, (1)=

sinh(3J3)+ 4sinh(1.53) + 5sinh(J) + 4sinh(0.5J)
cosh(3J) + 8cosh(1.5J) + 15cosh(J) + 24cosh(0.5J) + 16

(30)

(31)

andthemagnetisationis.

g =

[ sinh(3J) +4sinh(1.53) + 5sinh(J) + 4sinh(0.5J)

0.5
32
cosh(3J) + 8cosh(1.53) + 15cosh(J) + 24cosh(0.5J) + 16] (32)
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The plot of thisresult is shown in Figure 3.
1
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Figure3: Dependenceof thespontaneous magnetisation per
spin o ontemperatureT for thethree-dimensonal |singmode,
Eq.(32),J=1.

Ising proposed another solution of the one-dimen-
siona Issingmode . He considered achain of N spins
and used theexpression

0

c=kTa—HInZ (33)

whereH istheexterna magneticfield and Zisthe par-
titionfunction. Inthe partition function, the summation
isover dl configurationswith N, spinsupand N—-N,
spinsdown, where N, changesfrom Oto N. However,

if r,(1)=0.99 and the case 1 described above takes

place, then N— N, is of the order 1% and configura-
tionswith N—N, >> 1% areimpossible and may not
betakeninto account.

If oneknows T, (1) one can calculate exactly the

number of spinsup and downintheinfinitechain. Inthe
cd culation of the partition function only the configura-
tionswith that number of spinsup and down must be
taken. Asthedirectionsup and down haveequd rights,
onemust takedso theconfigurationswith N, spinsdown
and N — N, spins up. Such partition function will be
exact and caculationswithit will produce correct re-
sult. Other configurationsare impossibleand may not
betakeninto accountin calculationof Z. InRefs. 1, 3-
12, other solutionsof the one-dimensiond, two-dimen-
sond, andthree-dimensiona 1sing mode sweregiven.
They dso useEq. (33) and summation over al configu-
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rations, and, therefore, arewrong.

CONCLUSIONS

Earlier it has been thought that the Ising model,
unlikethemean field theory, predictsno phasetransition
for alinear chain system in the absence of externa
magneticfield. Itisshown that thistraditiona resultis
wrong becauseit isbased on awrong calculation of the
correlation function or taking redundant termsin the
partition function. Another solution isobtained which
does predict magnetisation. It acquiresits maximum
valueat T = 0 and decreases asymptotically to zero
withthetemperature. It hasbeen proventhat thesolution
of theone-dimensiona caseisexact. Usng thismethod,
exact solutions of the two-dimensiona and three-
dimensiond Isngmoddsareobtained. They dsoacquire
their maximum values at T = 0 and decrease
asymptoticaly to zerowith thetemperature. Itisshown
that thereisamistakein the former solutions of the
two- and three-dimensional Isng models.
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