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ABSTRACT

Single nucleotide polymorphisms (SNPs) can change polyadenylation
signals. Poly(A) signal (PAS) plays an important role during
polyadenylation process. Therefore, the selection of poly(A) sitesmay be
affected by the appearance of SNPs. With the rapid development of the
next-generation high-throughput DNA sequencing techniques, more and
more SNPs are discovered, but not all the SNPs can lead to the change of
the poly(A) sites. Here a pipeline named ESAP (extract SNPs associating
with polyadenylation) was designed that can extract the SNPs affecting
poly(A) sites. ESAP uses poly(A) prediction program PASS to compute
the base prediction scores which are used to identify the difference of
poly(A) sites because of the existence of SNPs. Finaly, the SNPs are
classified into “likely”, “probable”, “unlikely” according to their effect on
poly(A) sites. 569,859 SNPsfrom Arabidopss...Bur-0 and 40,026 poly(A)
site clusters (PACs) from Arabidopsis Thaliana are analyzed. Total 160
SNPsthat can affect PAS (PAS-SNPs) werefound, including 84 “likely”, 38

“probable”.

INTRODUCTION

SNPisan abundant form of genomevariation, dis-
tinguished fromrarevariation by arequirement for the
least abundant allele to have a frequency of 1% or
moreY. SNPsmay befunctionally responsiblefor spe-
cifictraitsor phenotypes, or they may beinformative
for tracing the evolutionary history of aspeciesor the
pedigreeof avariety!d. Themost significant function of
SNPsistheir strong relevanceto diseases, suchasa
SNPintheAPOE geneincreasestherisk for develop-
ing Alzhei-mer disease®. SNPs can create or disrupt
polyadenylation signalswhich may cause alternative
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polyadenylation (APA)A.,

Many studieson SNPsaccordingtotheir potential
effectsto human hedlth have been designed®. Aninte-
grative scoring system for classifying SNPscontainsa
collection of previoudy evaluated SNPswhich can be
queried by SNPsid, disease or chromosomal region.
These SNPsareanayzed and scored according to the
location of the SNPslike splicesite, ESE, TFBS, cod-
ing region and putative del eterious effectson human
genes®. Hereapipeline named ESAP (extract SNPs
associating with polyadenyl ation) wasdesigned toiden-
tify SNPswhich can make some change on poly(A)
sites. Firstly, the SNPsthat can affect PASwereiden-
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tified. Secondly, PASS®7 isused to computethe pre-
diction scoreswhose differenceareanimportant evalu-
ation of theclassfication. Finally, SNPsareclassified
into“likely”, “probable”, “unlikely”.

MATERIALSAND METHODS

The datasets

The reliable published datasets of Arabidopsis
SNPs from the 1001 Genomes (http://
www.1001genomes.org/) which consists of 569,859
SNPs for ecotype Bur-0 and 501,399 SNPs for
ecotype Tsu-1 wereused®. Poly(A) sitesof Arabidopsis
were analyzed and discovered by mapping
polyadenylated ESTsand full-length cDNA sequences
to thereference genomes?. Because of poly (A) site
microheterogeneity in plants, poly(A) sitesthat locate
within 24 nt of each other inthe samegenewereclus-
teredtoapoly (A) sitecluster (PAC). Thetotal num-
ber of PACsweusedis40,026inthecorrdationanayss
of SNPsand poly(A) sites. Moreover, the DNA ref-
erence sequences aredownloaded from TAIR (http://
arabidopss.org)).

Thedataflow of thepipdineESAP

The pipelinewas designed to analyze SNPs pro-
vided within the context of aDNA sequence. ESAP
takesafilewhich specifiesal availableoptionsasin-
put. Thecommand lineversion of ESAPiswrittenin
C++ and theclassificationisdone by R. Wefirst ex-
tracted the SNPs that can affect the poly(A) signals
(PAS-SNPs) based on the existing PACs data. Sec-
ond, the prediction scoreswere computed by the pro-
gram PASS®7 whose input data are the sequences
containing 301 nt upstream and 99 nt downstream of
the PACs that can map to PAS-SNPs. Third, arule
system classified the SNPsinto “likely”, “probable”,
“unlikely” (Figure 1).

Extracting PAS-SNPs

ThePASisAAUAAA during our associate analy-
sisof SNPsand poly(A) sites. Usingthecleavage site
(CS) asareference point, the NUE regionislocated
10 to 40 nt upstream(*Y. Therefore, the SNPswhich
are located 50 nt upstream or downstream from the
PA Cswereextracted according to thestrand of PACs.

————, FyurL PAPER

These SNPswerereferred to as our candidate SNPs
and name them as PAS-SNPs. Based on their effect
on PAS, aclassification of the PAS-SNPsinto two cat-
egoriesisgiven: “delete” that changes the signal to an-
other motif, “create” that changes no signal to
AAUAAA inthelocus.

Figurel: Overview of thedataflow of the pipdineESAP. (1)
Inthefirst step, SNPsand poly(A) sitesare mapped tothe
DNA sequences. (2) Inthesecond step, asshownin part A, for
the G allele, theright cleavage site (CS) isused. For the A
allele, theleft CSisused, becausethe PASincludinga SNP
isfunctional. The consequence of thechoiceisthat thetran-
scription may beshorter. Asshownin part B, weextracted the
PAS-SNPsand computed prediction scoresby PASS|6, 7].
(3) Thelast step istheclassification of SNPs.

The procedure of extracting PAS-SNPsincludes
three sections. First, for agiven PAC, the SNPsthat
locatein 50 nt upstream from the PAC are chosenwhen
the strand of PAC is“+”. On the contrary, the SNPs
chosenshouldlocatein 50 nt downstream fromthe PAC
whenthestrandis“-”. Second, the SNPs in potential
poly(A) signal AATAAA (in DNA sequence) arede-
tected by amotif search using asliding window. The
motif searchlooksagivenmotif inDNA sequence con-
sisting of the SNP and itsflanking sequences (5 nucle-
otidesupstream and downstream) for each dlele. The
DNA sequence should bereversed and paired when
the strand of the PAC that relatesto the SNPis“-”.

Comparingthe prediction scoresof the DNA se-
guences affected by SNPs

To investigate whether PAS-SNPs can have an
impact on poly(A) sites, the prediction scores of se-
guences containing 301 nt upstream and 99 nt down-
stream of the PA Csthat were computed by PASSS7
are analyzed and the whole difference in scores be-
tweentwo dleesof one SNP (agroup) wereregarded
asacriterion. Inorder toreflect thisinfluenceintuitively,
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aD vaueweredefinedtorepresentit. The D valueis
computed asthefollowing equation.

Y (s, -8
D = -=0
N-1E i |

Intheequation, N, s,, s, E,,, arerespectively the
number of the scores compared in agroup, thei-th of
N prediction scoresfor referencealleles, thei-thof N
prediction scoresfor non-referencedlees, thesmaller
one between the mean of N prediction scoresfor ref-
erence dlelesand themean of N prediction scoresfor
non-referencealleles.

The prediction scoresof nucleotides|ocatedinthe
region N/2 nt upstream and N/2 nt (N=23) downstream
of the PACsare compared to indicate the influence of
the SNPson poly(A) sites. The s, werereferred to
asthedifference between the prediction scores of i-th
nuclectidefor referencedleesand non-referencealle-
les,and s, asthemaximumvaueamongthe s val-
ues. Then, the s,, s, that correspond to the that is
greater than 0.6 whenisgreater than 1, andthes,, s,
that correspond tothe s that isgreater than 0.6s,,,
when s, isgreater than 1, and thes,, s, that corre-
goondtothe s thatisgreater than0.8s,,, whens,,_, is
lessthan 1, are defined as a set of prediction scores
varying significantly. Thenumber of these prediction
scoresisrepresented by N. .

Classification of PAS-SNPs

Theprocessof classification of PAS-SNPsisdi-
vided into three steps. First, those whose N, values
aregreater than 30 and lessthan 41 are defined asa set
“candidate” and the others as “unlikely”. Second, since
more than half of the D values are greater than 0.1,
thosewhose D valuesare greater than 0.1 areclassi-
fied as“likely” and the others are classified as “prob-
able” in the set of “candidate”. Third, after correcting
for rank-sum test (Wilcoxon’s test) and FDR in “likely”
and “probable”, those whose p-values are greater than
0.05aregrouped as““unlikely” in the “likely” and “prob-
able”.

Therefore, the“likely” includes those PAS-SNPs
whose N, valuesaregreater than 30 and lessthan 41
and D valuesaregreater than 0.1, and the “probable”
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includesthose PAS-SNPswhose N, valuesare greater
than 30 andlessthan41and D vaduesarelessthan 0.1,
and the p-valuesof SNPsin thetwo classesshould be
lessthan 0.05. The “unlikely” not only includes those
PAS-SNPswhose N, valuesarelessthan or equal to
30 and p-valuesare greater than or equal to 0.05, but
alsoincludesthose SNPsthat can’t affect PAS.

RESULTS

The SNPsdistributeunevenly around thePACs

Thedistribution of SNPswithin different genere-
gion aswell astheregion around PACssitesisfairly
nonuniform which iscorrelated with the conservation
of genome sequences*2%3. InArabidopsis, the SNPs
ratesaround PACssitesin 3’UTR are also nonuniform
and show that the number of SNIPsthat |ocate upstream
of PACsarelarger thanthat | ocate downstream of PACs
(Figure2.A). Furthermore, thenumbersof PAS-SNPs
located 50 nt upstream or downstream of PACsindif-
ferent generegionare 149, 3,8in3’UTR, CDS, intron
respectively. The distances of PAS-SNPsand PACs
asodisgtribute unevenly which aregeneraly 16 nt or 20
nt (Figure2. B).

Theimpactson PACscaused by SNPsin genere-
gionsaredifferent

Thereare 112 of 148 D vauesgreater than 0.2 and
thebiggest oneis1.159inthe3’UTR. However, the total
number of D va uesgreater than 0.2 is6 and thebiggest
oneis0.277intheintron. TheD vauesintheCDSare
generdly larger thanthosein thetwo other generegions
whicharedl gregter than 0.2. What’s more, the biggest D
vaueintheCDSis2.076thatisamost twotimesof the
biggest D vdueinthe3’'UTR and ten times of the biggest
oneintheintron. Therefore, theinfluenceof SNPsonPACs
iIsmog dgnificantintheCDS. Accordingtothedistribu-
tionof D vauesthat predict thepotentid effect that aSNP
haveon poly(A) sitein different ranges, we found that
thereisnot asharp distinction between theinfluence of
“create”” SNPs and “delete”” SNPs for PACs (Figure 3.
A). Different SNPshavedifferentimpactson PACs thus
their N, alsodistributesasymmetrical that areusudly lo-
cated in the scope of 31 to 44 and there are 89 groups
whose N, are33(Figure 3. B).
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Figure2: Pand (A) showsthedistribution of SNPsthat locatein theregion 100 nt upstream and 100 nt downstream of PACs
of ecotypeBur-Oand Tsu-1in Arabidopsis. Thereissdow upward trend from upstreamto downstream. Panel (B) showsthe
digribution of distancesbetween PAS-SNPsand rdated PACs, thehorizontal axisrepresentsthedistancebetween SNPsand

their related PACsand thevertical axisrepresentsthenumber of the distances.
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Figure 3: Thedistribution of D valuesin class“delete” and “create” is shown by the Panel (A). The D values are mostly less
than 0.2 and show littledifferencein two classes. Thedigtribution of sgnificantly affected scorenumber isshown by the Panel

(B) and thereisa peak at the position of 33.
Extract SNPsin different generegionswith ESAP

Thepipeine ESAP were used to extract SNPs af -
fected poly(A) sitesin different generegionsfor the
Bur-0. Theresult showsthat 76, 36 SNPswereclassi-
fiedinto “likely” and “probable” in the 3’UTR, while
there are only 3 “likely “, 0 “probable” SNPs in the
CDSand 5 “likely”, 2"probable” SNPs in the intron
(TABLE1). Theprediction scoresof DNA sequences
wherethetwo allelesof one“likely” SNP located are
showninfigure4. Only 0.021% of 569,859 SNPswere
classified aslikely or probableto cause achangein

poly(A) sites,

TABLE 1: Thedistribution of different classes of SNPsin
different generegions.

Classes

Regions Likely Probable Unlikely All
JUTR 76 36
Intron 5 2 569,737 569,859
CDS 3 0

DISCUSSION

To identify SNPswhich modify thepoly(A) sites
through changing PAS, the pipeline ESAPwere de-
sgned. Unlikemany other SNPandlysistoals, our pipe-

line is amed at analyzing the effect of SNPs on
polyadenylation. It have shown with 569,859 SNPs
and 40,026 PACsinArabidopsisthat the pipelineis
ableto divide SNPsinto three classes on the basi s of
their effectson poly(A) sites. What’s more, some con-
clusionsaredrawn during theanaysis. The SNPsrate
intheupstream of PACsislessthan that inthe down-
stream of PACs in Arabidopsis. The reason of this
mainly owesto the genomic sequence conservation™,
It found that the distances between PAS-SNPs and
PACsareusualy between 16 nt to 20 nt. The number
of the prediction scores of DNA sequenceswherethe
two alelesof SNPslocated varying significantly is33.

Score distribution

Soore vale

Positiondml)

Figure4: Thedistribution of theprediction scoresof DNA
sequenceswher ethetwo allelesof one“likely” SNP located.
Thered curve with small circles represents the scor es of
reference sequenceand theblack curvewith small triangles
representsthe scor esof non-r efer ence sequence. Theposi-
tion of thePAC is301in thehorizontal axis.
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Not only theinfluence of SNPsfor different poly(A)
stesisdifferent, but dsotheeffect of SNPson poly(A)
gteindifferent generegionsisdifferent whichisbiggest
inthe CDS. But, SNPswhich can create PAS show a
sameresult asthosethat can delete PAS, whichisseen
from thedifferenceof prediction scores.

The SNPs of the same hapl otype together were
not considered. Thus, ESAPtreatsal SNPsasinde-
pendent. Only one SNP is taken into account even
though theinput sequencescontain severa SNPs. That’s
why that the combined effectsif multiple SNPsoccur
aremissed.
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