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KEYWORDSABSTRACT

Energy band nonparabolicity is present in the materials such as graphene,
GaAs, HgCdTe, InSb, wurtzite GaN etc. The energy levels for the
nonparabolic subbands are different from parabolic subbands. In this work
we discuss about nonparabolicity factor and find its numerical value in
monolayer, bilayer and multilayer graphene. We also discuss how the
nonparabolicity affects the density of states of graphene. The density of
states function tells us how many quantum states are available in the
band per unit energy level. The nonparabolic effects are more pronounced
in two-dimensional system because carriers in subbands are always away
from the band edge. Here, we use a dispersion relation that can be used to
describe nonparabolicity in a variety of materials and device structures.
This dispersion relation is based on Kane�s k.p model and is suitable for

both narrow and widegap nonparabolic materials.
 2013 Trade Science Inc. - INDIA

INTRODUCTION

The effect of nonparabolicity in energy band on
semiconductor device has been noticed in the case of
bulk material[1-3], inversion layer[4], heterojunction in-
terfaces[5], quantum wells[6-8] and superlattices[9,10]. The
nonparabolicity is well established in narrow gap de-
vices. Some examples of non-parabolic solid state ma-
terials are HgCdTe, GaAs and graphene. The situation
is complicated in wide gap materials such as GaAs and
graphene when spin orbit interaction is taken into ac-
count.

Graphene[11] is the recently discovered thinnest and
strongest ever measured material in the universe. Its
charge carrier exhibit intrinsic mobility and can travel
micrometer long distance without scattering at room
temperature. This is a monolayer of carbon atoms[12,13].

They are packed into a dense honeycomb crystal struc-
ture. Carbon atoms are arranged in hexagonal struc-

Figure 1 : Honeycomb structure of graphene[12]
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ture and have two atoms per unit cell. The carbon-car-
bon bond length is 1.42A0 (Figure 1)[12].

This paper is organized as follows: In section 2, we
discuss about band structure of monolayer graphene.
In section 3, we discuss band structure of bilayer
graphene. In section 4, we evaluate the nonparabolicity

factor of graphene and discuss the dependence of den-
sity of states on it.

BAND STRUCTURE OF MONOLAYER
GRAPHENE

Figure 2 : Band structure of monolayer graphene[14,15]

The electronic band structure of monolayer
graphene is gapless with crossing of the bands at two
points K

+
 and K

-
 located at the corners of the Brillouin

zone. Although the first Brillouin zone has six corners
only two of them are non equivalent pair. It is possible
to connect two of the other corners to K

+ 
using a recip-

rocal lattice vector (Hence the other two are equivalent
to K

+
) and it is possible to connect K

+
 and K

 -
 with a

reciprocal lattice vector. To distinguish between K
+
 and

K 
-
 an index å = ± 1 is used. Using this values of primi-

tive lattice vector b
1 
and b

2 
it can be seen that the wave

vector corresponding to point K
å
 is given by K

å 
= å

(4ð/3a,0). The K points are called �valley�s using no-

menclature from semiconductor physics. Exactly at the

k
å
 point, k =K

å
. This indicates that there is no coupling

between the A and B sublattices exactly at the K
å
 point.

The two sublattices are both hexagonal Bravais lattices
of carbon atoms.

BAND STRUCTURE OF BILAYER
GRAPHENE

Bilayer graphene consists of two weakly Vander
Waals coupled honeycomb sheets of covalent bond
carbon atoms. The system can be described in terms of
four sublattices. There are four energy bands, two con-
duction bands and two valence bands. Overall, the band
structure is similar to that of monolayer graphene, with

Figure 3 : Band structure of bilayer graphene[14,15]
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each monolayer band split into two by an energy. The
most interesting part of the band structure is in the vi-
cinity of the K points, as shown in the left inset of Fig-
ure 3 which focuses on the bands around K

 -
.

NONPARABOLICITY FACTOR OF
GRAPHENE

For energies above k = 0 of the order of a fraction
of the band gap the conduction band becomes
nonparabolic. At this point straight forward perturba-
tion theory breaks down because of the small band gap
the nonparabolic nature of the conduction band will be
important at high temperature or high electron concen-
tration.

Kane considered both k.p interaction[1,2] and spin
orbit coupling as perturbations to the classical Hamilto-
nian in isotropic material. The resulting Hamiltonian can
be diagonalized exactly and does not in principle re-
quire the carrier kinetic energy E to be small. However
Kane�s solution is accurate only if the interaction with

the other bands can be neglected which does imply a
small E. We define E

g
 as the prime bandgap and E

�  
as

the split of splitting which can be written[8,9] as:
E(E+Eg)(E+E

g
+E


)=k2P2(E+E

g
+2E


/3) (1)

where E= E-( k2/2m
0
2) and P is Kane�s momentum.

At the band extremum E  0.
We can approximate (1) taking upto second order

terms (E2)[16,17]

2k2/2m
1 
 E+áE2 (2)

where m
1
 is the electron effective mass at the band mini-

mum and á is the nonparabolicity factor. eq.(2) repre-
sents dispersion relation which is based on Kane�s k.p

model. The nonparabolicity factors can be determined
from (1) and (2)

, (3)

Using eq.(3) we can determine the numerical value of
nonparabolicity factor for different materials.
In the case of GaAs, m

1
 = 0.067m

0

á = 1/E
g 
(1-.067)2 = 0.87/E

g
(4)

In the case of graphene nonparabolicity factor depends
on electron effective mass

So the nonparabolicity factor of monolayer graphene

á = 1/E
g 
(1-0)2 = 1/E

g
(5)

In case of bilayer graphene, the nonparabolocity factor
á = 1/E

g 
(1-.022)2 = 0.956484/E

g
(6)

In case of multilayer graphene,
á = 1/E

g 
(1-.031)2 = 0.4761/E

g
(7)

DENSITY OF STATES OF GRAPHENE

The states in the bands and their dependence on
energy are described by density of states. In semicon-
ductor heterostructures, the free motion of carriers is
restricted to two, one or zero

spatial dimension. Here, we use the following rela-
tions to determine density of states of graphene[19]:

 (8)

where the Fermi velocity V
f
 =1x108cm/s.

The density of states of graphene can be evaluated as
(9)

E
K
= V

f
k dE

k
= V

f
dk kdk=E

K
dE

k
/ 2

Here, the factor 2 is due to valley degeneracy (g 
v
) of

graphene.
Putting the above values in eq. (9) we get

(10)

 Structure m1/m0
[18] 

a) Monolayer grapheme 0.0 

b) Bilayer grapheme 0.022 

c) Multilayer grapheme 0.031 

Figure 4 : Dependence of density of states of graphene on
nonparabolicity factor. In X- axis nonparabolicity factor and
along Y axis density of states have been plotted.
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(11)

Taking the help of eq. (2), equation (11) can be written
as

(12)

Eq. (12) represents the dependence of density of states
of graphene on nonparabolicity factor. It is shown in
Figure 4.
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