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KEYWORDSABSTRACT

We investigate the scattering phenomena at the inhomogeneous bound-
ary of an atomic nanocontact in quasi-one dimensional magnetic structure.
In particular, we study an atomic nanocontact separating two waveguide
groups of semi-infinite spin ordered ferromagnetic monatomic chains. The
model system is supported on a non-magnetic substrate and considered
otherwise free from magnetic interactions. The spin dynamics of the quasi-
one dimensional system is studied by the matching method, the coherent
magnon transmission, magnonic conductance and the magnetic localized
states are calculated and analyzed. The inter-atomic magnetic exchange is
varied on the nanocontact domain to investigate the consequences of
magnetic softening and hardening for the calculated properties. The nu-
merical results show the interference effects between the incident magnons
and the localized spin states on the nanocontact domain, with characteris-
tic Fano resonances. The results yield an understanding for the relation
between the coherent magnon conductance and the spin nanocontact in
the perfect quasi-one dimensional ferromagnetic structure.
 2011 Trade Science Inc. - INDIA

INTRODUCTION

The physics of low-dimensional magnetic systems
has been of interest for some time but particularly sig-
nificant progress, both in experiment and theory, has
been made during the last several years. Related re-
search activities have been growing because the quan-
tum nature of low-dimensional low-spin systems prom-
ises a rich variety of phenomena to be explored. Among
other features, the transport of energy in 1D-magnetic
systems is expected to be highly unusual. A number of

models describing 1D-dimensional systems are inte-
grable, implying, for instance, conservation of energy
current and, as a consequence, ballistic energy propa-
gation and divergent thermal conductivity. The question
of whether the energy transport is diffusive or ballistic is
currently under active discussion for atomic[1, 2] as well
as spin[3, 4] 1D-systems.

The presence of atomic defect in magnetically or-
dered systems affects essentially the magnon spectrum
leading to the appearance of new modes outside the
bulk band of an ideal system. These modes are named
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localized states and are strongly depending on the na-
ture of the structure defect (such as atomic steps,
adatoms, surface, interface, irregular distribution, atomic
hole defect...). There is an increasing volume of experi-
mental data and findings to elucidate the structural[5-8]

and magnetic[9-11], properties of systems containing
atomic defect or nanostructures. Consequently, there
are a number of theoretical methods to deal with the
effects of different type of atomic defects[12]. The prin-
cipal mathematical formulation used to describe, for
example, the spin motion equation, in Heisenberg sys-
tems[13], is based on the Green functions method, which
can give information on the magnetic properties at the
crystal defect, the spectral densities and the thermody-
namic properties of different systems[14, 15].

In this work, we present a model to study spinwaves
transmission via an atomic nanocontact in quasi-1D sys-
tem, which is considered to act as a magnetic joint be-
tween two groups of semi-infinite magnetically ordered
Heisenberg monatomic chains.

The system is supported on a non-magnetic sub-
strate, and considered otherwise as free from magnetic
interactions with his environment. The dynamics of spins
and the magnon diffusion, which are the magnetic exci-
tations on the chains in the presence of the nanocontact,
is the subject of our analysis. The coefficients of trans-
mission and reflection, magnonic conductance and lo-
calized spin states are derived as elements of a
Landauer-type scattering matrix. The purpose is to give
a theory of the properties of a spin nanocontact and an
understanding of the relation between the coherent
magnon conductance via the nanocontact, and the struc-
tural configuration of the latter. We examine three dif-
ferent cases concerning the magnetic exchange in the
nanocontact zone. This makes it possible to know the
influence of softening and hardening of the magnetic
exchange in the nanocontact domain on the magnetic
properties.

In the next section we present the basic elements of
the model, describing the spin dynamics on the group
of monatomic chains that constitute a quasi-one-dimen-
sional crystallographic waveguide, on either side of the
nanocontact domain. In section 3, we study the spin
dynamics of the nanocontact itself. The individual and
the total transmission are then derived using the match-
ing method[16-19]. In section 4 numerical applications are

presented for the spin nanocontact to illustrate the con-
sidered model. Conclusions are also presented and dis-
cussed in this section.

THEORETICAL MODEL

The structural configuration studied in this paper,
for the magnon conductance via atomic nanocontact, is
presented in Figure 1. The lattice consists of two iden-
tical groups of four semi-infinite monatomic chains dis-
posed in the space as quasi-one dimensional input and
output waveguides.

Figure 1 : A schematic representation of the quasi-1D crys-
tallographic waveguides with an atomic nanocontact as a joint
between them. The quasi-one-dimensional waveguides are
made up from four semi-infinite monatomic chains disposed
in the space. The shaded zone denotes an effective nanocontact
domain.

The integral of exchange between nearest neigh-
bors in the domains to the left and the right of the
nanocontact zone are represented respectively by the
constants J, where the shaded area in Figure 1, consti-
tutes the effective nanocontact domain. The integral of
exchange in this inhomogeneous boundary may differ
from perfect zone value, and are hence labeled J

d
. It is

convenient next to define the following ratio:
 = J

d
 /J (1)

For ferromagnetic Heisenberg exchange interactions
between nearest neighbors, the Hamiltonian of the
ground state is given by
H =  2 

p


p� 
J

pp� 
S

p
.S

p�
(2)

S
p
 (S

p�
) are the spin vectors, where p  (n, m, s)

along the x, y and z directions, respectively. The ex-
change constants J

pp� 
= J

 
coupling magnetically

 
nearest

neighbor sites p (p�) in the system are the same every-

where except on the nanocontact domain.
The three cases analyzed for the studied nanocontact

are characterized by the following possibilities
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 < 1,  = 1 and  > 1 (3)
For  < 1 and  > 1, a magnetic softening or hard-

ening is said to take place on the nanocontact domain.
For  = 1 the same exchange interactions exist through-
out the system. It is also assumed that the exchange is
homogeneous between the sites of the quasi-1D sys-
tem.

Consider the spin precession displacements  ±
p
(t),

where 
p
(t) = S

p


.
(t)  < S

p
 >, the brackets are

thermal averages.  denotes the Cartesian directions,
 = z is normal to the substrate. The method employed
to study the spin dynamics, may be described by the
equations of motion for the spin precession displace-
ments on atomic sites p, see Ref.20 for details.

Suppose that the sites p are distant from the
nanocontact domain, such that p  (n, m, s), the equa-
tions for spin dynamics to the left and right of the shaded
domain in Figure 1, may be cast in the matrix form
[I � D()]  ±

p
  = 0 (4)

 = /
0
 =   /2JS is a dimensionless frequency

for the perfect quasi-1D magnetically ordered
waveguides. I denotes a unit matrix, and D() is a spin
dynamics matrix characteristic of the perfect waveguide.
 is a generic phase factor between neighboring sites
on the waveguide along the axis in the x-direction.

In this representation ±

p
  is the corresponding

vector of the spin fluctuations for the column of the mag-
netically ordered waveguide, made up of the four mag-
netic monatomic chains, disposed in the space. [I �
D()] is an irreducible four by four matrix for the four
inequivalent sites per unit cell. Both the propagating and
the evanescent eigenmodes are described by the phase
factor doublets {, -1}.

The propagating magnon modes are determined by
the condition that = 1, whereas the evanescent
modes are determined from the condition < 1[16-

19]. The exact solutions for each doublet are obtained
as a function of the frequencies . These solutions are
obtained when the secular equation of the spin dynamic
matrix [I � D()] vanishes. For the system under study
the secular equation may be expressed as a polynomial
of degree eight in 
 A

s
() s = 0 (5)
A

s
() are the polynomial coefficients. Due to the

Hermitian nature of the spin dynamics in the absence of
strong external magnetic fields, both phase factors {,

-1} verify symmetrically the polynomial forms.
The solutions of Eq.(5) provide the eigenmodes of

the system. There are, however, only four modes of
physical interest. For the propagating modes 

i
, their

inverse 
i
-1 are modes propagating in the opposite sense

and both represent the magnon dispersion branches.
For the non propagating modes only the evanescent
modes 

i
< 1 are considered, their inverse repre-

senting non physical divergent modes.
The magnons dispersion curves for the perfect

quasi-1D waveguides are given in Figure 2, as a func-
tion of the normalized wave vector 

x
 = k

x
a, where 

x

runs over the first Brillouin zone in the interval [�, ].
a is the lattice parameter.

Figure 2 : Typical magnon dispersion curves for the perfect
quasi-one-dimensional waveguide of Figure 1.

THE SCATTERING PROBLEM

To analyze the scattering on a waveguide in the pres-
ence of an atomic hole defect, as in Figure 1, it is es-
sential to know the evanescent 

i
<1, as well as the

propagating solutions 
i
 = 1, for a complete descrip-

tion of the scattering processes. Since the perfect
waveguide does not couple between different
eigenmodes, we can treat the scattering problem for
each eigenmode separately.
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For a magnon mode 
i
, incident at a frequency 

from the left to the right along the x-direction, the scat-
tering outputs due to the nanocontact are coherent re-
flected and transmitted fields. The Cartesian compo-
nents  of the displacement field u(n, m, s) for an
outside atom bordering the nanocontact domain, may
be expressed using the matching approach as the sum
of an incident propagating wave and a superposition of
the reflected eigenmodes of the quasi-1D perfect
waveguide at the same frequency. It may be written as
u�(n, m, s) = u

i


i
n + 

j


j
-n R

ij 
u

j 
with n < -2 (6)

The vectors u
i 
and u

j
 denote the associated eigen-

vectors of the dynamic matrix for the perfect
waveguides. In this equation R

ij
, is the reflection ampli-

tudes, into eigenmodes j = 1, 2, 3, 4 for the scattering
at a given frequency .

Whereas, for a site in the perfect waveguide (at the
right of the nanocontact), the displacement field u(n,
m, s) is expressed by the superposition of the
eigenmodes of the perfect waveguide
u(n, m, s) = 

j


j
 n T

ij 
u

j
 with n

 
> 2 (7)

The quantities T
ij
 are the corresponding transmis-

sion amplitudes for the incident modes i = 1, 2, 3, 4 of
the quasi-1D perfect waveguide.

Consider a Hilbert space constructed from the ba-
sis vectors [R>, T>] for the reflection and transmis-
sion into the different eigenmodes. Further,
±

p
(nanocontact)> is considered to group the spin pre-

cession displacements for an irreducible set of spins in
the nanocontact domain, where n  [�2, +2]. The equa-

tions of motion for this domain, coupled to the rest of
the system, may be written in terms of the vector
[±

p
(nanocontact)>, R>, T>].
Use of the transformations connecting the spin pre-

cession displacements yields a square linear inhomoge-
neous system of equations of the form
[I � D(

j
,)] [±

p
(nanocontact)>, R>,

T>] = � IH, 
i
  (8)

Where the vector � IH, 
i
 , mapped appropri-

ately onto the basis vectors in the constructed Hilbert
space, regroups the inhomogeneous terms describing
the incoming magnon.

For non-trivial solutions for the components of the
column vector [±

p
(nanocontact)>, R>, T>], the de-

terminant of the spin dynamics matrix [I � D(
j
,)]

must vanish. This yields the energies of the localized

spin states on the nanocontact domain.
In scattering phenomena the reflection and trans-

mission effects are described in terms of the scattering
matrix elements[21, 22], which are given explicitly by the
reflection coefficient R

ij
 for the backward scattered or

reflected waves j, and the transmission coefficient T
ij

for the forward scattered or transmitted wave j, per
incident propagating mode i.

The scattering behavior for the magnons is de-
scribed, as for the coherent scattering of other excita-
tions, in terms of the scattering matrix.

For different incident magnons i, the solutions of
Eq.(8) yield the reflection and transmission coefficients
R

ij
 and T

ij 
on the perfect waveguides, and the spin fluc-

tuations vector [±

p
(nanocontact)> for the irreducible

set of spins. The reflection and transmission scattering
cross sections r

ij
 and t

ij 
are then given at the scattering

frequency , as
r

ij
 = (v

gj
 / v

gi
) R

ij
2t

ij
 = (v

gj
 / v

gi
) T

ij
2 (9)

The scattering cross sections are normalized with
respect to the group velocities of the magnons to obtain
unitarity for the scattering matrix. v

gi
 is the group veloc-

ity of the eigenmode i, it is equal to zero for evanescent
modes.

We can define total reflection and transmission cross
sections for a given eigenmode i at frequency , by
summing over all the contributions of the scattered
magnons
r

i
() = 

j 
r

ij
() t

i
() = 

j 
t

ij
() (10)

Furthermore, in order to describe the overall trans-
mission of a mesoscopic multichannel system at a given
frequency , it is useful to define the total magnon con-
ductance, or nanostructure transmittance, ()
() = 

i


j 
t

ij
() (11)

where the sum is carried out over all input and out-
put channels at the frequency .

NUMERICAL APPLICATIONS

In Figure 2 the dispersion branches for the magnons
of the perfect waveguides are presented over the first
Brillouin zone in the interval [�ð, ð]. The magnons la
belled i  {1, 2, 3, 4}, from bottom to the top in that
order, are propagating modes in the respective fre-
quency intervals: Ù

1
 = [Ù

1,min
= 0, Ù

1,max
= 2.00], Ù

2
 

Ù
3
 = [Ù

2,min
= 1.00, Ù

2,max
= 3.00]
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and Ù
4
 = [Ù

4,min
= 2.00, Ù

4,max
= 4.00].

There are one acoustical mode (1) and three opti-
cal modes (2, 3, 4). The modes 2 and 3 are degener-
ate. The acoustical mode (1) is characterized by the
limiting behavior of his magnon branches, tending to
zero frequency when the wavevector tends to zero, and
the three optical modes their branches differ from zero
in the long wavelength limit.

The configuration of the nanocontact, studied in this
work, is presented in Figure 1. The scattering of the
magnons at the nanocontact domain is studied with ref-
erence to incident spinwaves of the perfect waveguide,
which is split into its transmitted and reflected parts.
The results presented are obtained with reference to
incident magnons from the left of the nanocontact do-
main to right in Figure 1. The numerical analysis is car-
ried out for three possibilities: (i)  = 0.9 (ii)  = 1.0
(iii)  = 1.1, which is a reasonable possibility (soften-
ing, homogeneous and hardening).

For   1 (  1), a magnetic softening (hardening)
is said to take place on the nanocontact domain. For 
= 1, the local exchange is the same as throughout the
system.

In Figure 3, we present the total magnon conduc-
tance of the system (), is a useful quantity to calcu-

late, as it corresponds to an experimentally measurable
observable, for example in heat transfer, it induced by
sum of the propagating modes of the system; it under-
goes the influence of the variation of the parameters of
the system at the neighbourhood of the nanocontact
domain. It spreads on a beach of frequencies corre-
sponding to 0    4.00, the magnon energy band;
these curves of conductance varies according to pa-
rameter 

,
 and present peak resonances of different

heights and widths, around frequencies  = 2.10 and
2.10, what gives it a rough aspect.

The total magnon conductance, ó(), is less than
or equal to one magnon throughout the  [0, 4.00]
interval. This illustrates how the atomic nanocontact at
the heart of the contact domain constricts the transmis-
sion to a maximum of one magnon at a time, which is
characteristic for the single-atomic chain n  [-2, +2].
Another general characteristic of the total magnon con-
ductance, in the interval   [1.20, 4.00], is the dis-
placement of its spectral features to lower frequencies
with increasing hardening of the magnetic exchange in
the nanocontact domain. In the interval of frequency
[0, 1.20], we observe the same behavior of magnon in
the three considered cases of . At the frequency posi-
tion  = 1.20, the conductance presents his minimum
and beyond this position, it presents two resonance
positions. These resonances don�t correspond to char-

acteristic Fano resonances. These resonances are due
to the interaction of the continuum with the localized
spin precession states. We note also, the acoustic mode
presents significant magnonic conductance, (), for
very low frequencies, for all three cases of exchange on
the nanocontact domain, probably due to the relatively
long wavelengths of the mode in this frequency interval,
in comparison with the lattice parameter, and also due
to the absence of interference effects on the nanocontact
with the two other high energy optic modes.

The model is applied to calculate numerically the
energies of localized spin states in the neighborhood of
the nanocontact domain joining the two semi-infinite
quasi-1D lattices. These spin states demonstrate the
essential features of the spinwave nanocontact modes
and the influence of perfect-perturbed zone interaction
parameters on the localized modes of magnons at the
nanocontact domain. The spinwave dispersion curves
for the perfect system and nanocontact modes are shown

Figure 3 : The total magnon conductance, calculated in the
frequency interval that covers the propagation of all the
waveguide magnons.
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in Figures 4(a, b, c), as a function 
y
, propagating par-

allel to the nanojunction zone. As pointed out earlier
these dispersion branches represent the propagating part
of the localized spin states that otherwise decay into the
bulk of the perfect lattices along the x-direction.

As has been mentioned, the regions where |
i
| =1

correspond to the propagating modes for the perfect
semi-infinite waveguides regions as shown in shaded
area in Figures 4(a, b, c). Near the nanocontact region,
the dispersion curves depict magnons propagating along
the x-direction that are however effectively localized in
the sense that their spin fluctuation field is evanescent in
the chains normal to the nanocontact. The amplitude of
the localized spinwave in the nanocontact zone decays
exponentially with increasing penetration into the two
semi-infinite perfect quasi-1D waveguides. These lo-
calized spin states are dynamic spin states for which the
spin precession field decreases in amplitude with dis-
tance from the nanocontact domain into the chains, in
conformity with the evanescent modes on the chains.
Their energies displace, naturally, to higher frequencies
with increasing magnetic exchange in the nanocontact
domain.

Let us mention that in Figure 4a, the softening case
is considered, whereas in Figure 4b the same exchange
interactions are taken everywhere. In the Figure 4c, the
hardening case is presented. Comparison between the
three Figures (4a, 4b, 4c), one notes that the localized
branches shift towards the high frequencies with the
hardening of the magnetic exchange in the nanocontact

Figure 4a : Localized spinwave dispersion branches on the
nanocontact domain between two identical semi-infinite quasi-
1D structures. The dispersion relations correspond to a soft-
ening case 

 
= 0.9. The shaded area represents the propagat-

ing modes for the perfect quasi-1D system.

Figure 4b : Localized spinwave dispersion branches on the
nanocontact domain between two identical semi-infinite quasi-
1D structures. The dispersion relations correspond to a ho-
mogeneous case 

 
= 1.0. The shaded area represents the propa-

gating modes for the perfect quasi-1D system.

Figure 4c : Localized spinwave dispersion branches on the
nanocontact domain between two identical semi-infinite quasi-
1D structures. The dispersion relations correspond to a hard-
ening case 

 
= 1.1. The shaded area represents the propagat-

ing modes for the perfect quasi-1D system.
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domain and become more energetic, in all examined
cases. For example, for 

y 
= 0, 

max
 = 6.75 (in Figure

4a); 
max

 = 7.00 (Figure 4b); 
max

 = 7.50 (Figure 4c).
In conclusion, we have presented a model calcula-

tion for the study of the coherent magnon transmission
via an atomic nanocontact which acts as the joint be-
tween two sets of semi-infinite quasi-1D monatomic
chains. The analysis of the conductance spectra and
localized spin sates of the set of irreducible sites in the
nanocontact domain demonstrate the central role of a
core subset of these sites for the dynamics of the sys-
tem. The fluctuations observed in the localized spin states
spectra are effectively due to the interaction between
the incident propagating modes with the scattered
spinwaves of the system, effects that are induced by
the modification of boundary magnetic exchange val-
ues. At this time, experimental or simulated data are not
available to compare with our results. The numerical
results yield an understanding for the relation between
the coherent magnon conductance and the geometric
of the nanocontact in the perfect quasi-1D system. It
can also serve towards the study of granular chains
constructed in an analogous manner on the classical
macroscopic scale.
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