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ABSTRACT

We investigate the scattering phenomena at the inhomogeneous bound-
ary of an atomic nanocontact in quasi-one dimensional magnetic structure.
In particular, we study an atomic nanocontact separating two waveguide
groups of semi-infinite spin ordered ferromagnetic monatomic chains. The
model system is supported on a nhon-magnetic substrate and considered
otherwise free from magnetic interactions. The spin dynamics of the quasi-
one dimensional system is studied by the matching method, the coherent
magnon transmission, magnonic conductance and the magnetic localized
states are calculated and analyzed. The inter-atomic magnetic exchangeis
varied on the nanocontact domain to investigate the consequences of
magnetic softening and hardening for the calculated properties. The nu-
merical results show the interference effects between the incident magnons
and the localized spin states on the nanocontact domain, with characteris-
tic Fano resonances. The results yield an understanding for the relation
between the coherent magnon conductance and the spin hanocontact in
the perfect quasi-one dimensional ferromagnetic structure.
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INTRODUCTION

Thephysicsof low-dimensiona magnetic systems
hasbeen of interest for sometimebut particularly Sig-
nificant progress, both in experiment and theory, has
been made during the last severa years. Related re-
search activitieshave been growing becausethe quan-
tum nature of low-dimensiona low-spin systems prom-
isesarichvariety of phenomenato beexplored. Among
other features, thetransport of energy in 1D-magnetic
systemsisexpected to be highly unusua. A number of

modelsdescribing 1D-dimensiona systemsareinte-
grable, implying, for instance, conservation of energy
current and, asaconsequence, ballistic energy propa-
gation and divergent thermal conductivity. Thequestion
of whether theenergy transportisdiffusiveor bdligticis
currently under activediscussion for atomici*2 aswell
asspin®4 1D-systems.

Thepresenceof atomic defect in magnetically or-
dered systemsaffectsessentialy the magnon spectrum
leading to the appearance of new modes outside the
bulk band of anided system. Thesemodesare named
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localized states and are strongly depending on the na-
ture of the structure defect (such as atomic steps,
adatoms, surface, interface, irregular digtribution, alomic
holedefect...). Thereisanincreas ng volumeof experi-
menta dataand findingsto elucidatethe structural =8
and magnetici®, properties of systems containing
atomic defect or nanostructures. Consequently, there
areanumber of theoretical methodsto deal withthe
effectsof different type of atomic defectd™. Theprin-
cipa mathematical formulation used to describe, for
exampl e, the spin motion equation, in Heisenberg sys-
temd®®, isbased onthe Greenfunctionsmethod, which
can giveinformation onthe magnetic propertiesat the
crysta defect, the spectra densitiesand the thermody-
namic propertiesof different systemd* 19,

Inthiswork, we present amodd to study spinwaves
transmissionviaan aomic nanocontactinquasi-1D sys-
tem, which isconsdered to act asamagneticjoint be-
tween two groupsof semi-infinitemagnetically ordered
Heisenberg monatomic chains.

The system is supported on anon-magnetic sub-
strate, and considered otherwise asfreefrom magnetic
interactionswith hisenvironment. Thedynamicsof spins
and themagnon diffusion, which arethemagnetic exci-
tationson the chansin the presence of the nanocontact,
isthesubject of our analysis. Thecoefficientsof trans-
mission and reflection, magnonic conductanceand lo-
calized spin states are derived as elements of a
Landauer-type scattering matrix. Thepurposeistogive
atheory of the propertiesof aspin nanocontact and an
understanding of the relation between the coherent
magnon conductanceviathe nanocontact, and the struc-
tural configuration of thelatter. Weexaminethreedif-
ferent cases concerning the magnetic exchangeinthe
nanocontact zone. Thismakesit possibleto know the
influence of softening and hardening of the magnetic
exchangein the nanocontact domain on the magnetic
properties.

Inthe next section we present the basic e ements of
themodel, describing the spin dynamicson thegroup
of monatomic chainsthat congtituteaquasi-one-dimen-
sond crystalographic waveguide, on either sideof the
nanocontact domain. In section 3, we study the spin
dynamicsof the nanocontact itself. Theindividua and
thetota transmission arethen derived using thematch-
ing method*5%9, In section 4 numerica applicationsare
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presented for the spin nanocontact toillustrate the con-
sidered model. Conclusionsareaso presented and dis-
cussed inthissection.

THEORETICAL MODEL

Thestructura configuration studied inthis paper,
for themagnon conductance viaatomic nanocontect, is
presented in Figure 1. Thelattice consistsof two iden-
tical groupsof four semi-infinitemonatomicchainsdis-
posed in the space as quasi-one dimensional input and
output waveguides.

n -y -1 011 3
Figurel: A schematicrepresentation of thequasi-1D crys-
tallogr aphic waveguideswith an atomic nanocontact asajoint
between them. Thequasi-one-dimensional waveguidesare
made up from four semi-infinite monatomic chainsdisposed
inthespace. Theshaded zonedenotesan effectivenanocontact
domain.

Theintegral of exchange between nearest neigh-
bors in the domains to the left and the right of the
nanocontact zone are represented respectively by the
constants J, wherethe shaded areain Figure 1, consti-
tutesthe effective nanocontact domain. Theintegra of
exchangein thisinhomogeneous boundary may differ
from perfect zonevaue, and arehencelabeled J . Itis
convenient next to definethefollowingratio:
v=J,13 @

For ferromagnetic Hei senberg exchangeinteractions
between nearest neighbors, the Hamiltonian of the
ground stateisgiven by
H=-2%#J_SS, 2

S, (Sp,) are the spin vectors, wherep=(n, m, s)
alongthex, y and z directions, respectively. The ex-
change constantsJ, . =J coupling magnetically nearest
neighbor sitesp (p’) in the system are the same every-
where except on the nanocontact domain.

Thethreecasesandyzed for the studied nanocontact
are characterized by thefollowing possibilities
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Fory<l1andy>1, amagnetic softening or hard-
ening issaid to take place on the nanocontact domain.
For y =1 the same exchangeinteractionsexist through-
out the system. It isalso assumed that the exchangeis
homogeneous between the sitesof thequasi-1D sys-
tem.

Consider the spin precession displacements(* p(t),
where ¢ pa(t) = Spoc_(t) -<Sa>, the brackets are
thermal averages. o denotesthe Cartesian directions,
o = zisnormd to the substrate. The method employed
to study the spin dynamics, may be described by the
equations of motion for the spin precession displace-
mentson atomic sitesp, see Ref.20 for details.

Suppose that the sites p are distant from the
nanocontact domain, such that p= (n, m, s), the equa-
tionsfor spin dynamicsto theleft and right of the shaded
domaininFigurel, may becastinthematrix form
[I-Dm)]|*>=0 4

Q=wln,= ; w/2JSisadimensionlessfrequency
for the perfect quasi-1D magnetically ordered
waveguides. | denotesaunit matrix, and D(n) isaspin
dynamicsmatrix characterigtic of the perfect waveguide.
n isageneric phasefactor between neighboring sites
onthewaveguideadongtheaxisinthex-direction.

In thisrepresentation |§ip > isthe corresponding
vector of thespinfluctuationsfor thecolumn of themag-
netically ordered waveguide, made up of thefour mag-
netic monatomic chains, disposed in the space. [Ql —
D()] isanirreduciblefour by four matrix for thefour
inequivaent Stesper unit call. Boththe propagating and
the evanescent elgenmodes are described by the phase
factor doublets{n,n}.

The propagating magnon modes are determined by
the condition that% n | = 1, whereas the evanescent
modes are determined from the condition | n | < 106
191, The exact solutionsfor each doubl et are obtained
asafunction of thefrequenciesQ. Thesesolutionsare
obtai ned when the secular equation of the spin dynamic
matrix [Ql —D(n)] vanishes. For the syssem under study
the secular equation may be expressed asapolynomia
of degreeeightinn
TA(Q)n*=0 (5)

A (Q) arethe polynomial coefficients. Dueto the
Hermitian nature of the spin dynamicsin the absence of
strong externa magnetic fields, both phasefactors{n,

flano Soienoe and flano Teohnology

n} verify symmetricaly the polynomid forms.

Thesolutionsof Eq.(5) providethe eigenmodes of
the system. There are, however, only four modes of
physical interest. For the propagating modesn,, their
inversen " aremodes propagating inthe oppositesense
and both represent the magnon dispersion branches.
For the non propagating modes only the evanescent
modes | n | < 1 are considered, their inverse repre-
senting non physical divergent modes.

The magnons dispersion curves for the perfect
quasi-1D waveguidesaregivenin Figure 2, asafunc-
tion of the normalized wavevector ¢ =k a, whered,
runsover thefirst Brillouinzoneintheinterval [-=, 7).
aisthelattice parameter.
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Figure?2: Typical magnon dispersion curvesfor theperfect
quasi-one-dimensional waveguideof Figure 1.

THE SCATTERING PROBLEM

To andyzethescattering on awaveguidein thepres-
ence of an atomic holedefect, asinFigurel, itises-
sential to know the evanescent | n | <1, sswell asthe
propagating solutions | n | =1, for acompletedescrip-
tion of the scattering processes. Since the perfect
waveguide does not couple between different
eigenmodes, we can treat the scattering problem for
each eigenmode separately.
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For amagnon moden,, incident at afrequency Q
fromtheleft to theright aong thex-direction, the scat-
tering outputs due to the nanocontact are coherent re-
flected and transmitted fields. The Cartesian compo-
nents o of the displacement field ua(n, m, s) for an
outs de atom bordering the nanocontact domain, may
be expressed usi ng the matching approach asthe sum
of anincident propagating wave and asuperposition of
the reflected eigenmodes of the quasi-1D perfect
waveguide at thesamefrequency. It may bewritten as
ua(n, m,s)=un"+In "R, uwithn<-2 (6)

Thevectorsu and u. denotethe associated eigen-
vectors of the dynamic matrix for the perfect
waveguides. Inthisequation R, isthereflection ampli-
tudes, into eigenmodesj =1, 2, 3, 4 for the scattering
at agivenfrequency Q.

Wheress, for astein the perfect waveguide (at the
right of the nanocontact), the displacement field uay(n,
m, S) is expressed by the superposition of the
elgenmodes of the perfect waveguide
uo(n,m,s) =En,"T, u withn>2 7)

The quantiti esT, arethe corresponding transmis-
sionamplitudesfor theincident modesi =1, 2, 3, 4 of
thequasi-1D perfect waveguide.

Consider aHilbert space constructed from the ba-
sisvectors[|R>, [T>] for thereflection and transmis-
sion into the different eigenmodes. Further,
|§ip(nanocontact)> isconsdered to group thespin pre-
cession displacementsfor anirreducible set of spinsin
thenanocontact domain, wheren € [-2,+2]. The equa-
tionsof motionfor thisdomain, coupled to therest of
the system, may be written in terms of the vector
[1C*(nanocontact)>, [R>, [T>].

Useof thetransformations connecting the spin pre-
on displacementsyieldsasguarelinear inhomoge-
neous system of equationsof theform
[Q1I =D({n;} )] [|C (nanocontact)>, [R>,

[T>]=—|IH,n,> 8)

Where the vector —[IH, n, >, mapped appropri-
ately onto the basisvectorsin the constructed Hilbert
space, regroupstheinhomogeneoustermsdescribing
theincoming magnon.

For non-trivia solutionsfor the componentsof the
column vector [|C* (nanocontact)>, [R>, [T>], thede-
terminant of the spin dynamics matrix [l —D({n,} )]
must vanish. Thisyieldsthe energiesof thelocalized
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Spin states on the nanocontact domain.

In scattering phenomenathereflection and trans-
mission effectsare described intermsof the scattering
matrix el ementd? 22, whicharegiven explicitly by the
reflection coefficient R, for thebackward scattered or
reflected wavesj, and the transmission coefficient T,
for the forward scattered or transmitted wave |, per
incident propagating modei.

The scattering behavior for the magnonsis de-
scribed, asfor the coherent scattering of other excita-
tions, intermsof the scattering matrix.

For different incident magnonsi, the sol utions of
Eq.(8) yiddthereflection and transmission coefficients
R, and T,on the perfect waveguides, and thespin fluc-
tuationsvector [|* (nanocontact)> for theirreducible
set of spins. The reﬁ ection and transmission scattering
Cross sections I and t; arethen given at the scattering
frequency Q, as
r,=, /vy IR 2t =(v, 1v) [T, |2 ©)

The scattering cross sectionsare normalized with
respect to thegroup ve ocities of themagnonsto obtain
unitarity for the scattering matrix. Vg isthegroup veloc-
ity of theeigenmodei, itisequal to zero for evanescent
modes.

Wecanddfinetotd reflectionand transmisson cross
sectionsfor agiven eigenmodei at frequency Q, by
summing over all the contributions of the scattered
magnons
r@Q=Xr,(Qt@Q)=Xt,(Q) (@10)]

Furthermore, in order to describetheoverdl trans-
mission of amesoscopic multichannel systemat agiven
frequency Q, itisuseful to definethetotal magnon con-
ductance, or nanostructuretransmittance, o(Q2)

o(Q) =X t,(Q) (11)
wherethesumiscarried out over al input and out-
put channel sat thefrequency Q.

NUMERICAL APPLICATIONS

InFigure2 thedispersion branchesfor themagnons
of the perfect waveguides are presented over thefirst
Brillouin zoneintheinterva [, n]. Themagnonsia
belledi € {1, 2, 3, 4}, from bottom to thetop in that
order, are propagating modes in the respective fre-
quency intervals: Q, =[Q, . =0,Q, =2.00],Q,=
Q,=[Q,,=1000, =300

2,min
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and Q,=[Q, . =2.00,Q, =4.00].

Thereareone acoustical mode (1) and three opti-
cal modes (2, 3, 4). Themodes 2 and 3 are degener-
ate. The acoustical mode (1) is characterized by the
[imiting behavior of hismagnon branches, tending to
zero frequency when thewavevector tendsto zero, and
thethreeoptical modestheir branchesdiffer from zero
inthelongwavd engthlimit.

Theconfiguration of thenanocontact, sudiedinthis
work, ispresented in Figure 1. The scattering of the
magnonsat the nanocontact domainisstudied with ref-
erencetoincident spinwavesof the perfect waveguide,
whichissplitintoitstransmitted and reflected parts.
Theresults presented are obtained with referenceto
incident magnonsfrom theleft of the nanocontact do-
maintorightinFigure 1. Thenumerical andysisiscar-
ried out for three possibilities: (i) y =0.9 (ii) y=1.0
(i) y=1.1, which isareasonable possibility (soften-
ing, homogeneousand hardening).

Fory < 1(y> 1), amagnetic softening (hardening)
issaid to take place on the nanocontact domain. For y
=1, thelocal exchangeisthe sameasthroughout the
Sysem.

InFigure 3, we present thetotal magnon conduc-
tanceof the system o(Q2), isauseful quantity to calcu-
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Figure3: Thetotal magnon conductance, calculated in the
frequency interval that coversthe propagation of all the
waveguidemagnons.
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late, asit correspondsto an experimenta ly measurable
observable, for examplein heat transfer, it induced by
sum of the propagating modes of the system; it under-
goestheinfluenceof thevariation of the parameters of
the system at the neighbourhood of the nanocontact
domain. It spreads on a beach of frequencies corre-
sponding to 0 < Q < 4.00, the magnon energy band;
these curves of conductance varies according to pa-
rameter y and present peak resonances of different
heightsand widths, around frequenciesQ = 2.10 and
2.10, what givesit arough aspect.

Thetota magnon conductance, o(€2), islessthan
or equal to one magnon throughout the Qe [0, 4.00]
interva. Thisillustrateshow the atomic nanocontact at
theheart of the contact domain constrictsthetransmis-
siontoamaximum of onemagnon at atime, whichis
characteristicfor thesingle-atomicchainn € [-2, +2].
Another generd characteristic of thetotal magnon con-
ductance, intheinterval QQ € [1.20, 4.00], isthedis-
placement of itsspectral featuresto lower frequencies
withincreasing hardening of the magnetic exchangein
the nanocontact domain. Intheinterval of frequency
[0, 1.20], we observethe same behavior of magnonin
thethree considered cases of y. At thefrequency posi-
tion Q =1.20, the conductance presentshis minimum
and beyond this position, it presents two resonance
positions. Theseresonancesdon’t correspond to char-
acteristic Fano resonances. Theseresonancesare due
totheinteraction of the continuum with thelocalized
Spin precess on states. We note d so, the acoustic mode
presents significant magnonic conductance, o(€2), for
very low frequencies, for al three casesof exchangeon
the nanocontact domain, probably duetothereaively
longwavd engthsof themodeinthisfrequency intervd,
in comparison with thelattice parameter, and a so due
to theabsence of interference effectson the nanocontact
with thetwo other high energy optic modes.

Themode isappliedto calculate numerically the
energiesof localized spin statesinthe neighborhood of
the nanocontact domain joining thetwo semi-infinite
quasi-1D lattices. These spin statesdemonstrate the
essential features of the spinwave nanocontact modes
andtheinfluenceof perfect-perturbed zoneinteraction
parameters on thelocalized modes of magnonsat the
nanocontact domain. The spinwave dispersion curves
for theperfect sysem and nanocontact modesareshown
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MNormalized frequency
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Figureda: Localized spinwavedispersion brancheson the
nanocontact domain between twoidentical semi-infinitequas-
1D structures. Thedisper sion relationscor respond to a soft-
ening casey=0.9. Theshaded arear epresentsthe propagat-
ing modesfor theperfect quasi-1D system.

Normalized frequency

KL

by

Figure4b : Localized spinwavedispersion brancheson the
nanocontact domain between twoidentical semi-infinitequas-
1D structures. Thedispersion relationscorrespond toa ho-
mogeneouscasey=1.0. Theshaded arear epresentsthepropa-
gatingmodesfor theperfect quasi-1D system.
inFigures4(a, b, ), asafunction ¢y, propagating par-
allel tothe nanojunction zone. As pointed out earlier
thesedispers on branchesrepresent the propageting part
of thelocalized spin satesthat otherwisedecay intothe
bulk of the perfect | atticesa ong thex-direction.
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Figure4c: Localized spinwavedispersion brancheson the
nanocontact domain between twoidentical semi-infinitequasi-
1D gructures Thedigpersion relationscor respond to ahard-
eningcasey=1.1. Theshaded ar ear epresentsthe propagat-
ing modesfor theperfect quasi-1D system.

As has been mentioned, theregionswhere |n | =1
correspond to the propagating modesfor the perfect
semi-infinitewaveguidesregionsas shown in shaded
areain Figures4(a, b, ¢). Near the nanocontact region,
thedispers on curvesdepict magnonspropagating along
thex-directionthat arehowever effectively locdizedin
thesensethat their spinfluctuationfieldisevanescentin
thechainsnormd to the nanocontact. Theamplitude of
thelocdized spinwaveinthe nanocontact zone decays
exponentially withincreasing penetrationinto thetwo
semi-infinite perfect quasi-1D waveguides. Theselo-
cdized spin satesare dynamic spin statesfor which the
spin precession field decreasesin amplitudewith dis-
tancefrom the nanocontact domaininto thechains, in
conformity with the evanescent modes on the chains.
Thelr energiesdisplace, naturdly, to higher frequencies
withincreasing magnetic exchangein the nanocontact
domain.

Let usmentionthat in Fgure4a, the softening case
isconsdered, whereasin Figure4b the same exchange
interactionsaretaken everywhere. IntheFigure4c, the
hardening caseis presented. Comparison between the
three Figures (4a, 4b, 4c), one notesthat thelocalized
branches shift towardsthe high frequencieswith the
hardening of the magnetic exchangein the nanocontact

flano Science and flano Technology

7 o Dacis ool



146

Dynamic properties of quasi-one dimensional spin hanocontact

NSNTAIJ, 5(3,4) 2011

Full Paper =

domain and become more energetic, inall examined
cases. For example, for ¢y: 0,Q . =6.75(inFigure
4q); 2 =7.00(Figure4db); Q__ =7.50 (Figure4c).

In conclusion, we have presented amodel cacula
tionfor the study of the coherent magnon transmission
viaan atomic nanocontact which actsasthejoint be-
tween two setsof semi-infinite quasi-1D monatomic
chains. The analysis of the conductance spectraand
localized spin satesof the set of irreduciblesitesinthe
nanocontact domain demonstratethe central roleof a
core subset of these sitesfor the dynamics of the sys-
tem. Thefluctuationsobserved inthelocdized spin Sates
spectraare effectively dueto theinteraction between
the incident propagating modes with the scattered
spinwaves of the system, effectsthat areinduced by
the modification of boundary magnetic exchangeval-
ues. At thistime, experimentd or smulated dataare not
availableto comparewith our results. The numerical
resultsyield an understanding for therelation between
the coherent magnon conductance and the geometric
of the nanocontact in the perfect quasi-1D system. It
can also serve towards the study of granular chains
constructed in an analogous manner ontheclassica
macroscopic scae.
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