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ABSTRACT

The time course of specific growth rate (u(t)) is essential in analyzing
microbial growth characteristics and the relationships between growth
and metabolites production. The conventional method for calculation of
() is done by hand and has relatively large errors, which deters its
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applications. In this paper, anew method for cal culation of 4(t) isdeveloped
using growth mathematical model and genetic algorithmfor model parameter

optimization. Thismethod ispractical and efficient.
© 2013 Trade SciencelInc. - INDIA

INTRODUCTION

Accurate calculation of time course of specific
growth rate (1(t)) isessential in anayzing the charac-
teristicsof microbia growth and growth related me-
tabolite productionsin areas of microbiology and fer-
mentation technology™. According to Gaden (1959),
microbid productsared assified intothreedasseswhich
are (I) thegrowth associated, (1) the non-growth as-
sociated, and (I11) the partialy growth associated
types®. The constitutive rate expressions for these
classes of product formation based on Luedeking Piret
equation’®, arewidely used in fermentati on technol ogy

to guidethe optimizations of mediacomposition, culti-
vation conditions, and nutrient feeding strategies. At
present, thetimecourseof 4(t) isusualy caculated by
hand from the changesof cell concentration of aseries
of smdl timeintervasdivided by boththetimeinterva
and the cell concentration of the corresponding time
interval. Asthechangeof cell concentration duringthe
small timeinterval issmall, largerelativeerror isre-
sultedinthe calculation of time course of x(t). Inorder
to decrease the calculation errors, data fitting and
smoothing aremadeusing polynomid equationin gen-
eral cases. But, thetypica “S” type growth curve of
microbia batch culture can’t be fitted well by polyno-
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mid equation.

Thetypicd “S” type growth curve of microbial batch
cultureistheresult of dynamic changesof pwith cultiva-
tiontime. z(t) issmal inthelag growth phase, increases
gradualy until it reaches 11 _intheexponential growth
phase, and decreasesto zero at last to reach the station-
ary growth phase, which leadsto a“bell” typed pcurve
vearsustime(Fgurel). Thetypicd “S” type growth curve
waswell modeled in our previous study (Figure 1)1
Based onthat modd, anew method will beusedinthis
research to cal culatethetime courseof . for batch cul-
ture. Geneticagorithm (GA) will beusedinoptimization
of model parameters. GA isan optimization agorithm
deve oped by imitating theevol ution of abiologicd popu-
lation, anditisefficient especidly in optimizing nonlinear
and sophisticated systemd®. By using mathematical
growth model and GA optimization methods, thetime
courseof y(t) iscaculatedin thisresearch.
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I: lag growth phase, |1: increased growth phase, I 11: exponential
growth phase, 1V: decreased growth phase, and V: stationary
phase. k,: maximum increasing rate of g, k,: maximum
decreasing rate of g, t.: thetime point when uequalsk,, t. : the
time point when u equalsk, and t : lag time.

Figurel: [llustration of growth model par ameter 87
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MATERIALSAND METHODS

Microbial srains, media, and cultivation conditions

Escherichia coli SM10 and Acidithiobacillus
caldusMTH-04 are used.

E.coli SM10iscultivatedinLuria Bertani

(LB) medium containing: peptone 10 g/L, yeast ex-
tract 5g/L, NaCl 10 g/L. Adjust pH to 7.0 and auto-
claveto sterilize. 100 ml of flask containing 20 ml of
medium isused, cultivated at 37 °C, shakenat 2001/
min. Theinoculationvolumeis0.2ml.

A. caldusiscultivated in Starky-S® medium con-
taining sulfur powder of 20 g/L and thesdlt solution that
contains (NH,)SO, 2.0 ¢g/L, KH,PO, 3.0 d/L,
MgSO, 7H,0 0.5 ¢g/L, FeSO,-7H,0 0.01 g/L,
CaCl-2H,00.25g/L. Thesdtssolutionisadjusted to
pH 2.5 using H,SO,, then autoclaved. Sulfur powder
isautoclaved for 2 h separately and added to the salt
solution before using. Theflask of 300 ml containing
100 ml of medium, iscultivated a 40 °Cinstandstill for
5dand thenshakenat 120 r/minfor 1d. Theinocula
tionvolumeis5mL.

Growth measur ement

E. cali cell concentrationwas measured by optical
absorbance at wavelength of 600 nm. A. caldus cell
concentration was counted using blood counter under
microscope.

M athematical modéd

The mathematical model of 1and cell concentra-
tionisexpressed using equations (1) and (2)1".

1 1
,u(t) =Hm- 1+ e—kin(t—tm) ' 1+ ekde(t_tde) @
dx
—=u(t)-x
5~ “O @

where, 1 isthe maximum specific growthrate, K is
therate constant for uincrease, k istherate constant
for udecrease, t_isthetime point when d /dt isthe
maximum, t_isthetime point when d/dtisthemini-
mum, and xiscell concentration.

Calculations

Thecd culationsof the mathematica modd andthe
mode parametersweredoneusing self-made software,
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programmed using Microsoft Visua Basic, runningon
persona computer with Microsoft Win7. Runge-K utta
method of order four wasused in solving differential
equations, and GA was used in optimizing the model
parametersin minimization of the sum of the squared
errors between the model predicted and the measured
cdl growth time coursedata. Thetime courseof pwas
a 0 cal cul ated by hand using themeasured experimen-
tal data, for validation of themathematical modd cal-
culated results.

RESULTSAND DISCUSSION

Parameter optimization using geneticalgorithm

GA isused in optimization of themodel param-
eters, whichisdeve oped by imitating theevol ution of a
biological population®. In GA, the population consists
of nindividuals represented by chromosomes, one
chromosome consists of mgenes, and one gene con-
sistsof a10 bitsbinary number coding for one model
parameter. The gene number mis5, which equalsthe
number of model parameters. So, one chromosome
consstsof a50 bitsbinary number coding for thewhole
set of 5 model parameters. Theindividual number n
(aso caled population size or chromosomenumber in
onegeneration) is1000, providing 1000 setsof search-
ing pointsin GA. Thepopulation of 2000 chromosomes
cond &t of 21000%50 binary matrix. In the beginning of
GA optimization, the 100050 binary matrix is randomly
initialized by randomly set “0” or “1” to each bit of the
matrix. Then, hybridizationismadewith pairsof chro-
mosomesrandomly selected at the hybridizationrate of
0.2, thehybridization sitesrandomly sel ected between
1 and 49, and the corresponding parts of the sel ected
pair of chromosomes being exchanged. After that, mu-
tationismade by randomly select the bitsin the popu-
lation matrix at the mutation rate of 0.05, and turnover
the selected bitsfrom “0” to “1” or vice versa. After
abovegenetic operations, theva ue coded by each gene
isdecoded and changed toreal by linear scalingto the
range of the corresponding model parameter. By using
one set of mode parameter val ues coded by one chro-
mosome and the growth mathematical model, model
prediction of cell growth can be made and the sum of
the squared errors between the model prediction and

BioTechnology — o

the measured cell growth time course datacan be cal -
culated. Thefitnessof each individua (chromosome) is
defined inversaly proportiond to theratio of each sum
of squared errorsof one chromosometo thetotal sum
of squared errorsof the 1000 chromosomes, by which
thefitnessof 1000 individua s (chromosomes) can be
calculated. Next, natural selectionismadewith 1000
individuas(chromosomes) randomly selected with the
selection probabilitiesequal to their fitness. The new
generation produced by the natural selection genetic
operation hashigher averaged fitnessthan thelast gen-
eration. The hybridization, mutation, and natural selec-
tion genetic operationsoperate continuously until the
smallest modd prediction error decreased smdller than
the predetermined limit, and the parameter val ues coded
by the chromosomewith thesmalest error arethefina
optimization resultsof GA. Thediagram of theoptimi-
zation softwareisshowninFigure 2.

Before ca culation, the GA searching span of each
parameter vaueispredetermined. Thevauesof t and
t,, can be estimated from the growth curve. Wider
rangescan begivenfor thevauesof k_andk,, whose
values are not easily estimated. Thevalueof 4_can
asoberoughly estimated from the physiological knowl-
edge of themicrobia strainsor fromthecell growth
curve. Wider search rangesfor the parameter values
will cost longer cdculation time. Theoptimized model
parameter vauesareshownin TABLE 1, and theex-
cellent fitting and predicting resultsshown in Figures.
3~4 show that GA ispowerful inmodel parameter op-
timization.

Geneticagorithmisespecidly useful insolvingthe
sophisticated optimization problems. It has been suc-
cessfully usedinbiological mode parameter optimiza
tion®*, medium composition optimization™!, biochemi-
ca network optimization*?, and bioprocess control %3,

Calculation of timecourseof p

E. coli and A. caldus were cultivated in LB and
Sarky-S satsmedium, respectively. Themeasured and
hand cal cul ated time course of cell growth and specific
growth rateaswell asthemodel predictionsfor E. coli
and A. caldus, respectively, wereplottedin Figures. 3
and 4. The mathematical model of equations (1) and
(2) and the optimized model parameter vaueslistedin
TABLE 1wereused.
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Figure2: The GA calculation diagram for g(t)

TABLE 1: Model parameter valuesoptimized using genetic
algorithm

Strains o (Uh) ko (U)K (WD) ta(h)  te(h)
E. coli 0.600 7.799 0.617 0725 4580
A.cadus  0.022 0.065 0036 46380  100.000

Inthisresearch, only the measured time course of
cell growth dataisused inthemodel parameter optimi-
zation by GA whilethe calculated data of time course
of uisnot used. Theperfect fit of themode prediction
with the measured data of cell growth shownin Fig-
ures. 3aand 4aprovidesthebasisfor the accurate cal-
culation of x(t). Inadditionto E. coli and A. caldus,
thefeasbility of themodel in prediction of cell growths
of the fungi Trichoderma reesei Rut C30 (ATCC
56765) and the bacteria Lactobacillus delbrueckii is
also being verified™. Aboveresults confirm that the
model cal culation method for calculation of «(t) devel-
opedinthisresearchisreliableand widely applicable.

The widely used growth models for example,
Monod (1949), Tessier (1942)1*°1, Moser (1958)!¢1,
and Contois (1959)'" growth moddl s, which usethe
limiting substrate concentration astheindependent vari-
able, arenot fit for the purposefor calculation of s(t).

Moreover, these model scan not predict thelag or the
stationary growth phases or both of them. Logistic
equationisanother widely used growth mode 28, but it
can not predict the lag growth phase and unable be
used in calculating thetypical “bell” typed u curve of
batch culture. Themathematica model usedinthisre-
search correctly modelsthetypical “S” type growth
curveand “bell” type x(t) curveof microbia growth, is
appropriately applied asageneral tool for calculation
of (t) of typical microbia growth.

Analysisof metaboliteproduction characteristics

Asintroduced in the section of instruction, accord-
ing to Gaden (1959), microbia productsareclassified
into the growth associated, the non-growth associated,
and thepartially growth associated types®, and there-
|ati onshi p between the specific product productionrate
(q p(t)) and y(t) can be described by Luedeking Piret
equation (3):

Gy (t)=c-u(t)+p ©)

Where, a,  the constants, with o0 and 3 =0 for
growth associated, a=0and B ‘™0 for non-growth
associated, and o0 and B=0for partialy growth as-
sociated production types, respectively. Assuming =8
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Figure3: Theexperimental and model calculation resultsof
(A) u, (B) cell concentration, and simulated q.(t), thegrowth
associateand non-growth associate production contributions
to thetotal production of E. cali. (e) experimental results;
(—) calculation results.

gOD,,, B=3.1g/n/OD,, the growth associated and
the non-growth associ ated product production, can be
evaluated separately in view of fermentation process
optimization (Figure 3C). For example, maintenance of
high «(t) valueand longer growth phaseispreferred if
the growth associated production takesamajor part,
whilemaintenanceof high cell concentrationfor longer

timeispreferredif non-growth associated production
takes amajor part. The total production can be re-
garded asthe sum of the growth associated and non-
growth associated productionsas described in equa
tion (4):

%qu(t)-X:a-y(t)-XﬂB-X 4)
Where, P istheproduct concentration. Theillustration
of g.(t), thecontributions of growth associated and non-
growth associ ated productionsto thetota production
areshowninFigure 3C.
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Figure4: Theexperimental and model calculation resultsof
pand cell concentration of A. caldus. (o) experimental re-
aults; (—) calculation results.

CONCLUSION

By using thegrowth mathematical modd and GA,
u(t) of microbia growth canbecaculated. While, most
of the currently used microbia growth modelsarenot
suitablefor above purpose. The growth model based
GA optimization method can be used as a general
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method for cal culation of x(t). And the useful ness of
(t) inanalysisof product production and optimization
of thefermentation processareillustrated.
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