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ABSTRACT 
 
Electricity price connotes a grey system, due to uncertainty and incomplete information
for partial external or inner parameters. A two-stage method based on grey system and
extreme value theory is proposed to estimate the value-at-risk. In stage one, to capture the
dependencies, seasonalities and volatility-clustering, a gray GM(1,1) model is utilized to
filter electricity price series. In this way, an approximately independently and identically
distributed residual series with better statistical properties is acquired. In stage two, a
peaks over threshold method is adopted to explicitly model the tails of the residuals of
GM(1,1) model, and accurate estimates of electricity market value-at-risk can be
produced. For conquering the difficulty of lacking observed data over threshold, Bayesian
estimation based on Markov Chain Monte Carlo simulation is used to estimate the
parameters of peaks over threshold model. The empirical analysis shows that the proposed
model can be rapidly reflect the most recent and relevant changes of electricity prices and
produce accurate forecasts of value-at-risk at all confidence levels, and the
computational cost is far less than the existing two-stage value-at-risk estimating
models, further improving the ability of risk management for electricity market
participants. 
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INTRODUCTION 
 

 Value-at-risk (VaR) is a risk management tool to quantify the level of risk exposure in advance and has become one 
of the most popular risk measurement tools in practice. With VaR as the risk measure, the purchasing risk of electric utility is 
calculated using a normal distribution based Delta model [1]. With assumption that the probability distribution of electricity 
price is normal, the impacts of different bidding strategies on the selling risk for generation companies has been analyzed 
based on Monte Carlo simulation, the results show that the minimum risk bidding strategy is the one based on marginal cost 
[2]. By introducing capacity sufficient rate and must-run rate as exogenous explanatory variables to depict the generators’ 
market power and the supply-demand relationship, a GARCH model with Gaussian distribution innovations (N-GARCH) has 
been used to assess the price of volatility risk in electricity markets [3]. Considering that N-GARCH based VaR calculating 
model cannot effectively address the leptokurtosis and heavy-tailed phenomenon in the data of profit and loss, a re-sampling 
method based on a bias-correction step and the bootstrap has been developed, further improving the VaR forecasting 
accuracy of the N-GARCH model [4]. By utilizing Gram-Charlier series expansion of normal and student-t distribution to 
depict the residuals distribution of ARMAX-GARCH model, an estimating model of VaR has been proposed, showing that 
the model with Gram-Charlier series expansion of normal density function can rapidly reflect the recent and relevant changes 
of electricity prices and produce accurate forecasts of VaR at all confidence levels [5]. 

 With GARCH-based model, the impacts of probability distribution assumption for residuals on VaR estimation 
accuracy are analyzed for normal, student-t, skewed student-t and general error distribution (GED), showing that the accuracy 
and stability of estimates of VaR are heavily dependent on the selection of probability distribution for innovations [6]. 
Extreme value theory (EVT) provides a firm theoretical foundation to study the asymptotical distribution of extreme value 
for order statistics, without assuming the probability distribution for the sample data. EVT allows extrapolation beyond the 
sample and can accurately describe the behavior of the tails of the real data. Rozario R. estimated the VaR of electricity 
market using a technique from extreme value theory known as peaks over thresholds (POT), showing that the estimated 
results perform well for moderate to very high confidence levels (95-90%), but struggle at higher levels (>99%) owing to the 
extreme clustering and other dependence evident in the data [7]. Bystrom Hans N.E. extended the classic unconditional EVT 
approach by first filtering the data via GARCH model to capture some of the dependencies in electricity return series, and 
thereafter applying ordinary EVT techniques. In this way the independently and identically distributed (IID) assumption 
behind the EVT-based tail-quantile estimator is less likely to be violated, and the better tail estimates can be acquired [8]. Up 
to now electric power energy cannot be stored economically and therefore the influencing factors such as load, climate, 
transmission network, installed capacity have an un-tempered effect on electricity prices. In particular, electricity price 
exhibits considerably richer structure than load curve and has the following characteristics: mean reversion, seasonalities, 
heteroscedasticities, lepkurtosises and extreme behavior with fast-reverting spikes. To obtain an approximately IID residual 
series with better statistical properties, an ARMAX-GARCH model with Gram-Charlier series expansion of normal density 
function and skewed student-t distribution over the error items is used to pre-filter the raw data to capture the dependences of 
electricity price series, further improving the effectiveness of the VaR estimates via POT model [9,10]. 

 Although the approximately IID residual series can be acquired by using GARCH models to pre-filter the electricity 
price series, the high non-linearity for the GARCH models leads to very large computational costs and hinders the wide 
application in practice. Considering that the incomplete and uncertain information for the spot prices is in line with the 
characteristics of grey variables, a gray system and extreme value theory based two-stage model for estimating VaR is 
proposed in this paper (referred as GM(1,1)-POT-VaR). In stage one, to acquire the approximately IID residuals with better 
statistical properties, a gray GM(1,1) model is used to pre-filter the electricity price series. In stage two, an EVT based POT 
model is employed to explicitly deal with the right tail of the residuals of the GM(1,1), and accurate estimates of VaR in 
electricity market can be produced. There are several contributions. First, the paper proposes a model that has the potential to 
generate more accurate quantile estimates. The seasonalities, skewnesses and kurtosises are accommodated via an GM(1,1) 
specification. In forecasting VaR, EVT is applied to the residuals. Clearly, the proposed combination is a sophisticated 
approach to forecasting VaR. The second contribution is to acquire an approximately IID residual series with better statistical 
properties by using a GM(1,1) model. The effectiveness of the VaR estimates via POT model can be further improved. The 
third contribution is to compare the accuracy of VaR forecasts under the proposed model with a number of conventional 
approaches. Tail quantiles are estimated under each competing model and the frequency with which realized returns violate 
these estimates provides an initial measure of model success. The empirical analysis indicates that the GM(1,1)-POT-VaR 
model can rapidly reflect the most recent and relevant changes of electricity prices and can produce accurate forecasts of VaR 
at all significance levels. Moreover, the computational costs is far less than the proposed models [7-10], further improving the 
risk management ability of electricity market participants. These results suggest that the proposed approach is robust and 
therefore useful. 
  

GRAY GM(1,1) MODEL 
 

 The grey model is a modelling method based on the concept of grey generating function and differential fitting, 
having the advantages that the predicted results can be tested and less original data are needed. Let the observed data series 
be (0) (0){ ( )}X x k=  and the first-order accumulated generating operation series of (0)X  is (1) (1) (1) (0)

1
{ ( )| ( ) ( )}k

j
X x k x k x j

=
= = å , 

among them, k=1,2,…,n. Then, the dynamic process of (1) ( )x k  can be described by the following GM(1,1) model: 
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(0) (1)( ) ( ) .x k az k u+ =         (1) 

 where, a  and u  are the model parameters to be estimated, (1) (1) (1)
1 1 1( ) ( ) (1 ) ( 1)z k x k x kl l= + - -  (0 1)l£ £  is the 

background value. In traditional GM(1,1) model the l  is usually taken to be a fixed value 0.5 [11]. Let [ , ]Ta a u=$ , then the 
estimated values by least squares method is 
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 After calibrated a$ , the solution to Eq. (1) with initial condition (1) (0)(1) (1)x x=  is  

(1) (0) ( 1)( ) (1) .a ku ux k x e
a a

- -æ ö÷ç= - +÷ç ÷çè ø
$       (3) 

 Using the first-order inverse accumulated generating operation of 
(1)

( )x k$ , the modeling value 
(0)

( )x k$  can be derived 
from Eq. (3): 

(0) (0) ( 1)( ) (1 )( (1) )a a kx k e x u a e- -= - -$      (4) 

 With the operation of electricity market, the new data of electricity price continue to emerge. In order to utilize the 
rich information contained in the new observed values, the new-information grey model is used in this paper. That is, each 
new obtained value will be added to the tail of the series, at the same time, the first observed value will be removed from the 
series. The research has shown that new-information grey model have some advantages such as small data sets required, less 
computational complexity, objective and reliable forecasted results [11]. 
 

EXTREME VALUE THEORY 
 

 There exists strong temporal dependence in the electricity price series due to the specific features of electric power. 
It violates the underlying assumption that the data series to which EVT is applied should be a sequence of IID random 
variables. In this paper, a two-stage approach, provided by McNeil and Frey, is used to this problem. Firstly, the 
heteroscedasticities, skewnesses, lepkurtosises and seasonalities of electricity price series are filtered by the GM(1,1) model 
in section 2 to obtain a nearly IID normalized residual series. In stage two, the EVT framework is applied to the standardized 
residuals to better capture the heavy-tails and improve the accuracy of VaR estimation [12]. 
 
POT model 

 POT is to model the excess distribution for the IID sample data that exceed a high threshold. Given the distribution 
function Fz(z) of a random variable Z，the distribution function of values of z above a certain threshold u, Fu(y), is called the 
conditional excess distribution function and is defined as 

( ) ( )( ) Prob( | ) , 0 ,
1 ( )

z z
u F

z

F z F uF y Z u y Z u y z u
F u
-= - £ > = " £ £ -

-
  (5) 

 where Z is a random variable, u is a given threshold, y=z-u are the excesses and Fz £ ¥  is the right endpoint of 
Fz(z).  

 The theorem of Balkema-De Haan-Pickands states that for large u, the conditional excess distribution function Fu(y) 
is well approximated by the generalized Pareto distribution (GPD) Gξ,β(y), which is defined as 

1

,

/
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( )

1 0

ξ

ξ β

y β

ξ y ξ
G y β

e ξ

-

-
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      (6) 

 for y∈[0, ∞) if ξ≥0 and y∈[0,-β/ξ] if ξ<0. ξ is the shape parameter or tail index and β>0 is the scaling parameter. In 
general, we cannot fix an upper bound for financial losses and only distributions with shape parameter ξ>0 are suited to 
model fat-tailed distributions. Therefore, we will only discuss the situation of ξ>0 in the remainder of this paper. 
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 If T is the total number of observations and Tu the number above the threshold u, the value of Fz(u) can be well 
approximated by the estimate (T-Tu)/T for sufficiently high u. Replacing Fu(y) by the GPD and Fz(u) by (T-Tu)/T, we obtain 
the estimate of Fz(z) from Eq. (5) 

µ
1

( ) 1 1 ( )
ξ

u
z

T ξF z z u
T β

-æ ö÷ç= - + - ÷ç ÷ç ÷çè ø
       (7) 

 for z>u. Inverting Eq. (7) for a given probability p (p≥90%), the estimates of the p-th tail quantile for the sample 
distribution can be gotten, 

µ ( )( )1
( ) 1 ,ξ

z u
βF p u Tp T
ξ

- -= + -        (8) 

 which is valid for positive excesses, that is z > u. 
 A reasonable threshold u must be chosen to effectively estimate the values of parameters ξ and σ. So far, no 

automatic algorithm with satisfactory performance for choice of threshold u is available. A popular graphical tool for visually 
selecting u is the sample mean excess plot defined by the points (u,en(u)). Let z(1)>z(2)>…>z(T) represent the IID order random 
variables, en(u) can be calculated by 

( )( ) ( ) ( 1) ,
n

n i
i k

e u z u n k
=

= - - +å         (9) 

 where k=min{i|z(i)>u}, n-k+1 is the number of observations exceeding threshold u [13]. If the GPD provides a good 
description of the data en(u) should be approximately linear in u. So we can select the value that locates at the beginning of 
the sample mean excess plot which is roughly linear as the suitable threshold. If the sample mean excess plot is upward 
sloping when z u³ , the distribution of the observations exceeding threshold u is the GPD with positive ξ; If the sample mean 
excess plot is downward sloping when z u³ , the observations exceeding threshold u follows a distribution with short tails; If 
the sample mean excess plot is horizontal when z u³ , the distribution of the observations exceeding threshold u is the 
exponential distribution. 
  
Bayesian estimates of model 

 Compared with Bayesian estimate, the disadvantages of maximum likelihood estimation (MLE) mainly include: (1) 
To solve constrained maximization problem by MLE, we face some challenging questions such as convergence and 
sensitivity of the estimated results to initial values selecting; (2) In practice we are usually interested in the highly nonlinear 
functions of the parameters, but not the parameters itself. When evaluating their confidence intervals the delta or bootstrap 
sampling methods have to be used, but these methods are quite time-consuming and difficult to be implemented; (3) It is 
difficult to prove if the asymptotically optimal conditions is satisfied. And in practice the large sample size is also difficult to 
be met especially in extreme value estimation; (4) With the regime-switching GARCH or mixture distribution model, it is 
difficult to determine the number of regimes and mixture distribution. Therefore, in this paper we utilize the Bayesian 
methods to calculate the parameters values of the POT model to avoid the increasing errors caused by insufficient sample 
data and the complexity of extreme value optimization by using MLE methods. 

 From Eq. (6), the likelihood function of the exceedances over the threshold, also called joint conditional density 
function, can be given by 

(1 )

1

1( | , ) 1 ,
u

u

ξ ξn

in
i

ξL y ξ β y
β β

- +

=

æ ö÷ç= + ÷ç ÷ç ÷çè øÕ       (10) 

 where, iy  is the sample observations of the exceedances { }Y z u z u= - > . 
 To implement Bayesian estimation, a proper prior should be chosen. The Bayesian factors are very sensitive to the 

hyperparameters selection of the non-informative prior, particularly the non-informative prior will result in the instability of 
the posterior distribution and the convergence problem of Gibbs sampling, and therefore an informative prior is suggested [14]. 
With the assumption that ξ is independent of β, referring to the suggestion of selecting prior distribution in the literature, in 
this paper the following information prior 

2: ( , ), 0, 0 : ( , ), 0, 0ξ N μ σ μ σ β IG a b a b> > > >     (11) 

 is specified, where the hyperparameters μ, σ, a, b can be evaluated by the moments estimation method based on the 
historical data. The joint posterior density of parameters ξ and β conditional on the exceedances is 

( , | ) ( | , ) ( ) ( )π ξ β y L y ξ β p ξ p β∝ , in which ( )p ξ  and ( )p β  are the marginal prior distribution for the parameters ξ and β. 
From the likelihood Eq. (10) and the prior distributions Eq. (11), we can obtain the posterior density distribution of ξ and β 
conditional on the exceedances: 
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 Under square loss, the Bayesian estimates of the parameters are equal to the posterior mean values, which can be 
acquired by computing the integral of the posterior distribution. From Eq. (12), it can be seen that the posterior density 
distribution is a complex two-dimensional nonstandard distribution, and it is difficult to calculate the mean values of the 
parameters directly. With the help of the Markov Chain Monte Carlo (MCMC) algorithm, a Bayesian calculating method 
which has developed rapidly in recent years and proved to be effective in practice, the parameters estimates can be derived by 
implementing computer simulation. The basic concept of MCMC algorithms is to draw from probability distributions based 
on constructing a Markov chain with stationary distribution π(ξ,β|y), which collectively forms an approximation of the 
desired posterior. With these large samples at hand, it makes it possible to conduct various statistical inferences for the 
posterior density distribution, such as the posterior mean and variance [15].  

 When direct sampling is difficult, Gibbs sampling is the most widely used MCMC algorithm for obtaining a 
sequence of observations which approximately form the joint probability distribution of two or more random variables. 
Among others, the single-site Gibbs sampler is the most attractive because of involving only a single variable sampling and 
therefore we adopt the single-site Gibbs sampler to calculate the posterior mean values in this paper [15]. The full conditional 
distributions can be derived from the joint posterior presented in Eq. (12), 
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 Let (0) (0)( , )ξ β  and ( -1) ( -1)( , )t tξ β  denote the arbitrary starting values and the estimated values of (ξ, β) in the (t-1)-th 
iteration respectively, the t-th iteration can be proceeded by the following steps: (1) Draw ( )tξ  from ( 1)( | , ) tπ ξ β y- ; (2) Draw 

( )tβ  from ( 1)( | , ) tπ β ξ y- . Now we have completed one iteration of the scheme by visiting each variable and then acquired the 
sampling sequence (0) (0) (1) (1) (t) (t)(( , ),( , ), ( , ))ξ β ξ β ξ βL  that is a Markov chain and its stationary distribution is ( , |y)π ξ β . To 
diagnose the convergence of the chain, the ergodic means from the well separated subsamples are calculated at a certain 
distance. If the ergodic means tend to be stability, the procedures of Gibbs sampling can be stopped and the posterior means 
can be estimated by the mean values of simulated samples. 

 What needs to be explained is that when drawing from the full conditional distributions, which can not be drawn 
directly, the acceptance-rejection sampler will be used [15]. If the probability density p(x) can be transformed into 
p(x)=c·h(x)·g(x)，where 0<g(x)≤1, c≥1 is a constant, h(x) is a easily sampling probability density, the implementation of 
drawing from p(x) can be proceeded as follows: (1) Draw u* from uniform distribution U(0,1) and y from h(y); (2) If u*≤g(y), 
set x=y, otherwise go to step (1). 

 When using the acceptance-rejection sampler to draw from the two full conditional distributions π(ξ|β,y) and 
π(β|ξ,y), the constant c is equal to 1, h(x) are normal distribution for π(ξ|β,y) and inverse gamma distribution for π(β|ξ,y),

( ) (1 )

1
( )= 1un ξ ξ

ii
g x y ξ β - +

=
+Õ also satisfies the conditions 0<g(x)≤1. 

  
ESTIMATION AND EVALUTION OF VAR 

 
 EVT aims to depict the behavior of extreme observations. The characteristics of electricity price data naturally lend 

itself to EVT analysis. For instance, electricity itself is non-storable. As such the balance between supply and demand must 
be maintained. This leads to an extremely turbulent market where spot prices can rise from average levels to many times 
within a very brief period. Large spot price movements expose market participants to significant market risk over short 
periods of time. In this situation risk managers are interested in a risk measure like VaR. The strong dependence in the 
sequence of electricity prices violates the underlying assumption that the data series to which EVT models are applied should 
be a sequence of IID random variables. In this paper, a two-stage approach, provided by McNeil and Frey [12], is used to this 
problem. Firstly, the dependences, skewnesses, lepkurtosises and seasonalities of electricity price series are filtered by a grey 
GM(1,1) model to obtain a nearly IID residual series {εt}. In stage two, the EVT framework is applied to the tails of the 
nearly IID residuals to better capture the heavy-tails and improve the accuracy of VaR estimation. 
 
GM(1,1)-POT-VaR estimating model 

 VaR is one of the most intuitive and comprehensible risk measures. It is based on the standard statistical technology 
and has become an international popular risk measurement technology. Assuming normal market conditions and no trading in 
a given portfolio, VaR is defined as a threshold value such that the probability that the worst loss on the portfolio over a 
target horizon exceeds this value is the given level of probability. Mathematically, the VaR of the portfolio with a confidence 
interval p, VaRp, is defined as [2] 



BTAIJ, 10(23) 2014  Wang Jin and Wang Ruiqing   14531 

{ }inf | Pr ob( ) 1pVaR x R P x p= Î D ³ £ - ,     (14) 

 where Prob(·) denotes the portfolio probability distribution and ∆P the portfolio losses over the given holding 
period. 

 For a given time horizon t, suppose that the system demand for electricity is Qt, the retail price to ultimate customers 
is P0, the spot price is pt=E(pt|It-1)+εt, where E(·) is the conditional expectation operator, It-1 the information set available at 
time t-1 and εt the random shock such that E(εt)=0 and E(εtεs)=0， t s" ¹ . The trading losses of an electric utility over the 
target horizon t is 

( )1 0E( | I )t t t t tP Q p ε P-D = + - .       (15) 

 As the retail price, P0, is a regulated price approved by electricity regulatory departments and the electric power 
demand, Qt, can be accurately forecasted, Qt and P0 can be regarded as constant. Let fε(εt |It-1) denote the conditional  
probability density function of εt conditional on It-1. The VaR of an electric utility in the specified period t with the pre-
assigned probability level p, denoted by VaRp,t, is 

, 1 0(E( |I ) ), 11 Prob( ) ( | I )
p t t t t

t

VaR Q p Pt p t ε t
Q

p P VaR f x dx
-

¥

- - -- = D ³ = ò    (16) 

 Now inverting Eq. (16) for the given probability p, we obtain 

( )1
, 1 0 1E( | I ) ( | I ) ,p t t t t ε tVaR Q p P F p-

- -= - +      (17) 

 where Fε(·) is the conditional cumulative distribution function of εt, 1Fe
-  is the quantile function defined as the 

inverse of the distribution function Fε. 
 The spot price presents the properties of incomplete and uncertain information. It is in line with the characteristics of 

grey variables, so we can estimate the expected values of the electricity spot price E(pt|It-1) and the p-quantile 1
1( | I )ε tF p-

-  of 
the residual series εt by Eq. (4) and (8). Then we can calculate the VaR of an electric utility in the specified period t by Eq. 
(17). 
 
Backtesting for VaR estimates 

 It is of crucial importance to assess the accuracy of VaR estimates. Backtesting or verification testing is the way that 
we verify whether forecasted losses are in line with actual losses. The most widely known backtesting method based on 
failure rates has been suggested by Kupiec [16]. Kupiec’s test measures whether the number of violation exception is in line 
with the expected number for the chosen confidence interval. Under the null hypothesis that the VaR estimated model is 
correct at a pre-assigned confidence interval, the observed failure rate should act as an unbiased measure of the level of 
significance as sample size is increased. Denoting the number of times that the actual portfolio returns fall outside the VaR 
estimate as N and the total number of observations as T, the following likelihood ratio (LR) 

( )( )2log 1 2log 1
N T N

N T N N NLR c c
T T

-
-

æ öæ ö æ ö ÷ç ÷ ÷ç ç ÷ç= - - + -÷ ÷ ÷ç çç ÷ ÷÷ ÷ç ç ÷è ø è ø ÷ççè ø
       (18) 

 is asymptotically 2c  (chi-squared) distributed with one degree of freedom. If the value of LR exceeds the critical 
value of the 2c  distribution, the null hypothesis will be rejected and the model is deemed as inaccurate. On the contrary, the 
null hypothesis will be accepted and the model should be considered correct. 
 
EMPIRICAL RESULTS 
 The PJM is organized as a day-ahead market. Participants submit their buying and selling bid curves for each of the 
next 24 hours. Then the market operator aggregates bids for each hour and determines market clearing prices and volumes for 
each hour of the following day. In this paper, a total of 1197 observations of average daily electricity spot prices in dollars 
per megawatt hour ($/MWh) and average daily loads in gigawatt (Gw) are employed to validate the performance of the VaR 
calculating model. The sample period begins on 1st June 2007 and ends on 9th September 2010.  
 
Estimates of GM(1,1) model 

 To improve the filtering effects of GM (1,1) model, the data window length is set to 7 considering the significant 
weekly seasonality of the electricity price series. Table 1 illustrates the Ljung–Box Q statistics for the residuals and their 
square sequences. It is seen from Table 1, the Ljung–Box Q statistics of the square series of residuals are not significant at up 
to 24 lags, suggesting that no potential time-varying volatility exists in the residual series; the Ljung–Box Q statistics at 7 or 
24 lags for the residual series are far less than the daily average electricity spot price series, indicting that there are still weak 
serial dependences, so we can conclude that the residual series is a stationary series with weakly serial correlation and 
without volatility clustering, meeting the prerequisite of EVT modeling [17]. 
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TABLE 1: Ljung-Box test for residuals of GM(1,1) model 
 

Statistics Electricity prices 
($/MWh) 

Residuals 
($/MWh) 

Ljung-Box Q(6) 3868.28(0) 882.765(0) 
Ljung-Box Q(24) 11348.94(0) 1235.612(0) 
Ljung-Box Q2(6) 3117.13(0) 314.055(0) 
cLjung-Box Q2(24) 7892.50(0) 456.305(0) 

 
Estimates of GM(1,1)-POT-VaR model 

 To apply EVT, the threshold can be selected by the mean excess function or Hill plots. From a closer inspection of 
the mean excess function, we find that the sample mean excess plot is roughly linear when the value of the threshold u is 
fixed 6.295. After selecting the threshold u, the estimates of the shape and scale parameters, ξ and σ, can be determined by 
fitting the GPD to the residuals via Bayesian estimator. Inserting the estimates of ξ and σ into Eq. (8), the tail quantiles of the 
standardized residual series at a given confidence level c can be calculated. Table 2 reports the estimated results for tail 
index, scale parameter and tail quantiles. It can be seen that the ξ estimates is positive and statistically significant, indicating 
that the right tail of the distribution of standardized residuals is characterized by the Fréchet distribution. In Bayesian 
estimation, the estimated parameters are considered as random variables and it actually increases the uncertainty of asset 
return distribution, thus the VaRs calculated by Bayesian estimation are generally greater than by MLE.  
 

TABLE 2: Estimates of GPD parameters and quantiles 
 

Threshold Shape parameter Scale parameter Confidence level Tail quantile 

Bayes -0.11848 4.028975 
95.0% 8.954089 
97.5% 11.42550 
99.0% 14.39604 

MLE -0.15951 4.029428 
95.0% 8.91774 
97.5% 11.28731 
99.0% 14.04341 

 
VaR estimates and backtesting 

 Without loss of generality, in this paper we assume that an electric utility has the obligation to serve 1MW of load 
24 hours a day and the retail price has been frozen at a level equivalent to 0$/MWh. Substituting the calculated results at 
subsection 5.1 and 5.2 into Eq. (17), the VaR at each confidence level can be estimated. The Kupiec’s test results for actual 
and forecasted losses are shown in Table 3. It can be seen from that the null hypotheses of ARMAX-GARCH-st-VaR [9], 
ARMAX-GARCHSK-VaR [10] and our proposed GM(1,1)-POT-VaR models cannot be rejected in each significance levels. 
Summarizing the results for the Kupiec’s tests, the VaR predictions by these methods are insignificantly different from the 
proposed downfall probability, but because the GM(1,1)-POT-VaR model is easier to deal with and possesses the advantages 
of less computational costs, this further improves the risk management ability for electricity market participants to some 
extent. 
 

TABLE 3: Backtests of estimated VaRs 
 

Confidence level Estimated model Expected Real LR 

95% 

GARCHSK[10] 60 59 0.013 
GARCH-st[9] 60 60 0.000 
GM(1,1)-MLE 60 61 0.023 
GM(1,1)-Bayes 60 60 0.000 

97.5% 

GARCHSK[10] 30 28 0.013 
GARCH-st[9] 30 30 0.000 
GM(1,1)-MLE 30 32 0.144 
GM(1,1)-Bayes 30 29 0.030 

99% 

GARCHSK[10] 12 13 0.087 
GARCH-st[9] 12 13 0.087 
GM(1,1)-MLE 12 11 0.082 
GM(1,1)-Bayes 12 11 0.082 
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DISCUSSION AND CONCLUSION 
 

 The distinctive characteristics of electric energy which cannot be effectively stored through time and space and 
needs instantaneous balance of supply and demand make electricity price present highly volatility and occasional extreme 
movements of magnitudes rarely seen in markets for regular financial assets, thus volatility of price risk identification, 
evaluation and management in electricity market are more important than in financial markets. Considering various 
influencing factors on electricity prices and their pertinences, a gray system and extreme value theory based two-stage model 
for estimating VaR is proposed. In stage one, to capture the most important characteristics such as seasonalities, 
heteroscedasticities, skewnesses and lepkurtosises and to acquire the approximately IID residuals with better statistical 
properties, a gray GM(1,1) model is used to pre-filter the electricity price series. In stage two, an EVT based model is 
employed to explicitly deal with the right tail of the residuals of the GM(1,1)l, and accurate estimates of VaR in electricity 
market can be produced. The empirical analysis based on the historical data of the PJM electricity market indicates that the 
GM(1,1)-POT-VaR model can rapidly reflect the most recent and relevant changes of electricity prices and can produce 
accurate forecasts of VaR at all significance levels. Moreover, the computational costs is far less than the proposed models [9, 

10], further improving the risk management ability of electricity market participants. These results present several potential 
implications for electricity market risk quantifications and hedging strategies. 
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