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ABSTRACT KEYWORDS
Application of artificial neural network (ANN) for predicting industrial Boiler corrosion;
process behavior has been increasingly popular in the power sector in- ANN model;

dustry. In this paper, a multi-layer perceptron (MLP) based ANN model
has been developed to predict the deposition rate of oxide scale on
waterwall tubes of a coal fired boiler. The input parameters in the ANN
model are boiler water chemistry and relevant operating parameters,
namely, pH, akalinity, total dissolved solids, specific conductivity, iron
and dissolved oxygen concentration of the feed water and heat flux of a
typical 250 MW coal fired boiler. The neural network architecture has
been optimized using an efficient gradient based network optimization
algorithm to minimize the training and testing errors rapidly during simu-
lation runs. The parametric sensitivity of heat flux, iron content, pH and
the concentrations of total dissolved solids in feed water and other oper-
ating variables on the scale deposition behavior has also been investi-
gated. It has been observed that heat flux, iron content and pH of the feed
water have arelatively predominant influence on the oxide scale deposi-
tion phenomenon. There has been very good agreement between ANN
model predictions and the measured values of oxide scale deposition rate
substantiated by the regression fit between these values.
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INTRODUCTION

Corrosion and Scaling are the major waterside
problems in industrial boilers. Various compounds
of calcium, magnesium, iron, copper and silicaare
predominant elements found in most of the boiler
scales. These scales usually form adense layer that
impedes hegt transfer and causeboiler tubefailureslead-

ing to outages. M ost corrosion productsthat deposit
asoxidescaesintheboiler originateinthe pre-boiler
(up-stream) systems. The mgjority of theboiler scales
congist of colloidd and particulate metalsand their ox-
ides. The compoundsare swept into the boiler and de-
posit on boiler tube surfaces primarily as oxide scales.
Corrosion not only contributesto scaledeposition, but
aso eventually leadsto materialsdamage.
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Figure 2 (a) : Heat transfer in the radiant section
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Figure 2 (b) : Heat transfer in the convection section

Reliability of operation of heat transfer surfaces of
coal fired boilersis determined mostly by deposition
rate on these surfaces such asboiler water walls, su-
perhegter andrehester. Figure 1 showsasmplified sche-
matic of acod fired sub critica boiler. Numerouslabo-
ratory and field test resultshave shownthat oxidescales
aredeposited non-uniformly aong the height of boiler
waterwallsand others associated components*2. The
predominant amount of scalesgetsdepositedinhigh
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heat flux zonesin the boiler assembly. In spiteof more
rigid requirementstowardsfeed water purity, the depo-
sition rate on heat exchanging surfacesin boilershas
been increased dueto higher operationd requirements.
Oncethereisascalebuilds-up on aheat transfer sur-
face, at least two associated problemsdo occur. The
first problem isthe degradation in the performance of
heat transfer equipment. The second lesscritical prob-
lemisthat asmdl changeintubediameter substantialy
decreasestheflow rate or increasesthe pressuredrop
intheheat transfer equipment. Thisresultsin decrease
inoperational period between cleaningsandincreases
therisk of equipment failures. Figure2[a) and[b] show
the schematicsof heat transfer modesin the radiant
and convective section of coal fired boiler. Corrosion
and scal e deposition aretime-dependent phenomenon.
Nevertheless, the widely used method for designing
industrial boilersand heat exchangers exposedto a
corrosive environment isto useempirica methodsfor
corrosion resi stance associ ated with scaleformation.
Ingeneral, empirical methodsbased on classical sta-
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Figure 3(a) & (b) : Typical view of the signal wave forms during oxide scale measurement

tistical techniqueare not capable of estimating quanti-
tatively the quantum of scaledeposition and corrosion
losswith reasonable degree of accuracy. Thus, it may
be probable that the equipment will haveto betaken
out of servicefor cleaning a aninconvenient and eco-
nomically undesirabletime. In order to provide an esti-
mate of operational longevity of boiler tubesfor ade-
srableperiod of operation, it isnecessary tobeableto
predict the scale deposition and corrosion behavior as
function of both timeand operational parameterg®*l.
Dueto increased feed water (Recycled conden-
sate and makeup water) purity in coal fired both sub-
critica and supercritica boilers, thescdesform on steam
generating surfaces mostly consist of corrosion prod-
uctsof construction materids, i.e. iron and copper ox-
ides. Sinceformsof existence of iron and copper cor-
rosion products (scales) depend on water chemistry,
the deposition rate of the above mentioned impurities
would depend on the nature of chemical water treat-
ment. The maor congtituent of theoxidescaeisiron
oxide. Therefore, optimization of water chemistryisan
important operational issue, in particular for the power
plantswith mixed metallurgy. Themost popular water
trestment schemefor sub-critical boilersisammonia/
hydrazinefeed water treatment, dso knownasall vola
tiletreatment (AVT). Whenthetubemetal isin contact
with the steam over period of time, the oxidation pro-
cess may begin to form alayer of magnetite (Fe,0,)
scale. Inthe prolonged exposurethis phenomenon will
worsen situation that |eadsto potential creep rupture
problems. Scal esinsidethe superheater and reheater

steam tubes have a so been found to be one of thema-
jor contributorsto thetubefailure. Heat transfer rate
acrossthetube al so decreases dueto theaccumul ated
scdesingdethetube. A further effect of growing scaes
isthat thetubewill operateat rdatively higher tempera:
turesthanthose asoriginally specified. Such exposure
may cause degradation of thetubealloy, and thiseven-
tualy will lead to tuberupture. Itisestimated that 10%
of al power-plant breakdowns are caused by creep
fractures of boiler tubesdueto the scalesformation?.

Chemistry of deposition of oxidation-corrosion
products

Concentration of iron corrosion productsin boiler
water, ingeneral, exceedsiron solubility. These prod-
uctsmay havedifferent Szesand carry dectricd charges.
Inthis case, deposition mechanism may be explained
by particle charge dueto both ion adsorption ability
from water and transport of hydroxyl-ionsfrom par-
ticlesurfacelayer towater?., Polarity and magnitude of
iron corrosion particle chargeisgiven by both molecu-
lar and fluid propertieswith predominant influence of
potential forming ions, among other factors. Water
chemistry with no additionsof conditioning chemicals,
these potential-forming ionsfor iron oxidesare either
OH- or H+. Therefore, iron corrosion products depo-
stion ratekineticsdependscritically onfluid pH. The
scales, ingenera, compriseof Hematite (Fe,O,), Mag-
netite (Fe,0,), Quartz (SO,), Wallastonite (CaSIO,),
Calcite(CaCO,) and Brucite (MgOH.) etc.

Boiler water isnormaly maintained inan akaline
range (pH of 9- 11 depending upon the boiler typeand
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pressure) to prevent acidic attack. This pH rangeis
moderately basicand smdl amountsof causticakain-
ity (OH-) may be present in the bulk of boiler water.
Theboiler water sdetubewalsdeve op atightly bound
layer of magnetitefilmwhen theunitisplacedin opera:
tion after proper and complete cleaning. Over the pas-
sageof time, the protectivefilm becomesoverladwith
more porous magnetite scales, which consist of iron
oxide corrosion products transported from the feed
water systemi® 7. Because of porosity, thesescaleshave
muchlower heat transfer coefficient than thetube meta
and can eventually reduce boiler efficiency and which
may lead to localized overhesting of tubes. Thesescales
can also act as concentration sitesfor the potentially
corrosive chemicals, which normally areat low con-
centrationsinthebulk of boiler feed water. Mot of the
of iron oxide scales are usually generated during the
boiler startups. Iron oxide usualy constitutesthe bulk
of boiler tube scales and which necessitates periodic
cleaning of the boiler components. One of the major
operational issueswith oxidedepositionisthat the par-
ticles precipitate predominately on the hot side of the
tubes® 9. At elevated temperatures, the potential for
the under deposit corrosion mechanismswill proceed
morerapidly on the hot side of the tubeg® 14,

Anefficent mode based predictive methodol ogy for
scaledeposition rate on theinner surface of waterwall
tubesof cod fired boilerswould beavauableaidtothe
power plant engineersand boiler chemist whichmay pro-
videguidelinesto estimateremaining lifeof boiler tubes.
Inaddition, it providesknowledgebaseto envisage strat-
egiesto combat corrosion. For prediction of formation
of scaesand subsequent deposition on heet transfer sur-
facesof boiler assambly, it isimperativeto have pertinent
experimenta datawhichwill berequired by themodd to
predict process behavior in aquantitativemanner. The
first principle based kinetic model necessitatescritical
informeation onkinetic rate parametersand transport pro-
cessvariablessuch aslocd flow velocity, locd tempera
ture of thewater, temperature of heat transport surfaces,
porosity and therma conductivity of scales, uniformity of
surface heating and time of contact of water with the
surface. Thedeposition kineticsisa soinfluenced by lo-
cdized trangport processeswhich aresometimessrongly
coupled. These parameters needsto be estimated from
controlled experimentswhichisfairly cumbersome Quan-
titative determination of scaledeposition ratesin con-
Research & Reotews On

junctionwith pertinent mechanismg(such asflow asssted
corrosion) asafunction of water chemistry and operat-
ing parametersbased onfirg principlekinetic modding
hasremained adifficult subject. Thisisbecauseof com-
plex and probably non-linear rel ationship between the
dependent and independent variablessuch ascomposi-
tion and quantity of scales, operating parametersand ki-
netic rate coefficientsof scdedeposition process. There-
fore, first principlebased kineticmodd predictionsare
not waysamenableto aredistic plant operating condi-
tions. Therefore, often smplified assumptionsare made
to overcome phenomenologica complexities. Of late, the
DatadrivenArtificid Inteligence (Al) or Computationd
Intelligence (Cl) based techniquesareincreasingly used
successfully tofunctionaly map theinput-output rel aion-
ship of complex chemical processesaccurately. Al tech-
niques(suchasANN, Fuzzy logy and Geneticd gorithms),
inprinciple, areintelligent informati on-treatment system
with thecharacteristicsof adaptivelearning.
Application of anartificial neura network (ANN)
model hasbeen reported for datadriven modelling and
prediction of ash depositionin boiler heat transport sys-
tem(*2, ANN has al so been devel oped to successfully
characterizetherma behavior of boiler tubesinthepres-
enceof fouling on the basisof plant data™? and it has
a so been reported that such modelshave been applied
to control and minimizetheeffect of foulinginbiomass
boilerd™. Afghan et al.* provided abasic concept of
an expert systemfor boiler fouling assessment theoreti-
caly. A comparativestudy of Fuzzy logicand ANN has
been reported*® for the prediction of remaining life of
boiler tubes subjected to various damage mechanisms.
Zhen et d.1*" attempted an adaptive Neuro-Fuzzy tech-
nique for forecasting coal slagging inapower plant.
However, application of ANN modeling to predict the
oxidation scale deposition ratein boiler operationsis
relaively scanty inthe published literature.
Theobjective of the present work isto develop a
multi-layer feed forward ANN model to predict ex-
plicitly the deposition rate of oxide scaeasafunction
of measured plant data (input/output parameters),
namely heat flux, pH, total dissolved solids, specific
conductivity, iron concentration, silicaconcentration,
phosphate content, sodium content and dissol ved oxy-
gen concentration of thefeed water system of atypical
coal fired Indian operating boiler. The proposed ANN
model also attemptsto characterize effects of some of
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Figure4: Typical neural network ar chitecturewith input, hidden and output layers.

the operational parameters on the behavior of rate of
scale deposition. In this proposed ANN model,
Broyden-Fl etcher-Gol dfarb-Shanno (BFGS) network
optimization a gorithmswith optimized neurd network
architecture have been incorporated to improve the
network learning a gorithm andto minimizethetraining
error during the network learning process.

M easurement of plant data

Plants measurementshave been carried out to gen-
eratetherequisite datafor neural network modeling.
Thesdient features of the measurement are described
below. Severd sampleshavebeen collected at various
interval and sampling pointsfrom theIndian operating
plant and tested in thelaboratory. The parametric mea:
surementsareenumerated bel ow.

(i) Heat flux measur ement

Measurements of heat flux have been carried out
using portable heat flux meterswhich areinsertedin
different ingpection zones. Thehest flux instrument has
been inserted closdly to the surfaces such that compos-
itecontribution from both convectiveandradiativether-
mal transport from the flame front could be captured
withintolerableerror limit. Thetubul ar typeinstruments
known asflux-tubes have been used to minimizethe
variaioninthetherma conductivity of sca ebecauseof
ash and dlag accumul ation over theinstrument. Mea-
sured boiler tubewall temperatureswere used for the

eva uation of theheat flux. Themeasuringtubeisfitted
with two thermocouplesin holesof knownradia spac-
ings. Thethermocouplesareled away to thejunction
box wherethey are connected differentialy togivea
flux related electromotiveforcewhichisrecorded by a
digitd instrument.

(i) pH, specific conductivity and total dissolvesol-
ids(TDS) measur ement

Feed water samples at appropriateinterval have
been collected and tested inthewater anaysislabora-
tory. These parameters have been measured by usinga
portablepH meter and specific conductivity-cum-TDS
meter. Thisgpparausfunctionslikeatypical voltmeter
which consists of apair of electrodesconnected to a
system capable of measuring small voltagesof theor-
der of millivolts. It measuresthevoltage (el ectrical po-
tential) generated by the boiler feed water sample un-
der investigation and comparesthe samewith thevolt-
age of aknown standard sol ution asthereferencevolt-
age. Subsequently, it usesthedifferencein voltage (po-
tentia difference) to calculatethedifferencein pH. For
the conductivity measurement, the sametwo electrodes
with an applied AC voltage are placed in the water
sample. Thiscreatesacurrent dependent upon the con-
ductive behavior of the sample. Themeasuring device
registersthiscurrent and displaysthevalue either as
electrical conductivity or TDS (ppm). Theelectrical
conductivity ismeasured and the TDSiscal cul ated by
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abuilt-inempirical formulafrom theconductivity in-
puts.

(iii) I'ron content measur ement

Iron content in the feed water has been estimated
by thecolorimetric analysisproceduresusingthe 1, 10-
Phenanthroline Method. The procedure usesferrous
iron reagent powder containing 1, 10-Phenanthroline
asanindicator combined with areducing agent to con-
vert all but the most resistant formsof iron present in
thesampleto Fe™.

(iv) Phosphate and silica content measur ement

Phosphate and silicacontentsin feed water have
been determined by the colorimetric analyssusng UV
spectrophotometer. The method used for the measure-
mentsare, namely, ascorbic acid rapid liquid method
and heteropoly bluerapid liquid method respectively.

(v) Sodium content measur ement

Sodiuminboiler feed water wasestimated using a
portable sodium analyzer (waltron 9033 sodium ana-
lyzer R - low range). Thisandyzer isbased on advanced
multipoint control unit (MCU) technology. Common
measuring pointsin aboiler systemfor online sodium

measurement includes make-up water, condensate,
boiler feed water, saturated steam and main steam.

(vi) Dissolved oxygen measur ement

Dissolved oxygen content inthefeed water hasbeen
determined by portabledissol ved oxygen andyzer (Por-
table Oxi-Meter Multi 3410F). Inorder to conduct the
dissolved oxygen test, it is imperative to use grab
samples because analysisneedsto becarried out im-
mediatdly. Thisisessentially afield test which hasbeen
undertaken asaons te measurement.

(vii) Oxide scalethickness measurement

The oxide sca es have been measured using ultra-
sonic high frequency (20 MHz broadband) instrument
inthelaboratory. Thisinstrument hasbuilt in software
framework that i scapabl e of detecting appropriateech-
oesand measuring the short timeinterval betweenthe
two echo-peaksthat represent the steel/oxide and ox-
idefair boundariesreflections. A pre-calibrated value
of ultrasonic velocity has been utilized to computethe
thickness of the oxide scale using appropriate time,
vel ocity and thicknessrel ationships. Sincethe quan-
tum of datameasuredislarge enoughfor tabulationin

TABLE 1 : A typical segment of measured plant data

Heat flux pH Sped f_ic_ dlica Fe content Dissolved Nacontent  Phosphate Iron .OXi de
(KW/m?) conductivity (opm) content (ppbx10) (oom) content (ppm) depos; tion rajtse
(nsem/cm) (ppm) (Ppb) (kg/m”.secx107)
542 937 4 4 0.02 0.4 4 0.5 2 444
542 937 4.09 414 0.021 041 4.09 021 207 4.62
572 936 41 414 0.021 041 41 0.29 207 4.65
646 934 4.14 421 0.021 041 4.14 021 211 471
706 933 4.15 423 0.022 042 4.15 054 212 476
736 933 4.16 424  0.022 042 4.16 012 212 478
780 932 4.19 428 0.022 042 4.19 019 214 482
824 932 4.22 432 0.022 042 4.22 032 216 4.99
898 932 4.36 453 0.024 044 4.36 012 227 5.05
928 932 4.42 462 0.024 044 4.42 0.39 231 5.07
971 929 4.46 469 0.025 045 4.46 058 235 5.24
985 928 4.52 477  0.025 045 4.52 041 239 5.39
104.3 927 4.53 479 0.025 045 4.53 042 24 548
1104 923 4.72 508 0.027 047 4.72 044 254 552
1149 921 48 521 0.028 048 48 0.2 2.6 557
116.3 918 49 535 0.029 049 49 0.54 268 5.67
119.2 918 49 535 0.029 049 49 027 268 5.69
139.7 917 4,94 541 0.029 049 4.94 0.35 271 6.26
Research & Reotews On
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manuscript therefore, atypica segment of themeasured
dataisshowninthe TABLE 1. Thetota amount of
datawas collected during plant operating period rang-
ing from 40,000 to 100,000 hoursof boiler operation.

MULTI-LAYER PERCEPTION BASEDANN
MODEL

Thefundamental elementsof theANN methodol -
ogy comprisesof: (i) thefunctionality between input-
output of neurons; (ii) thetopological structure of the
network; and (iii) theval ues of the connected weights
and thresholds of neurons. The MLPbased ANN ar-
chitectureisshowninFigurel. MLPisanintercon-
nection of perceptronsinwhich dataand calculations
flow inasingledirection, from theinput datato the
outputs. The number of layersinaANN isthe num-
ber of layersof perceptrons. Theoutput fromagiven
neuron iscal culated by applying atransfer functionto
aweighted summation of itsinput to give an output,
which can serve asinput to other neurons.. Mathemati-
calythiscanbegivenas:

Nk -1
o =fk(z Wijkai(k—1)+Bjk) (1)
i1

wherea isneuronj’soutput fromk’slayer f isthe
biasweitiht for neuronj inlayer k. The mode!'fitting

parameters W are the connection weightsand f, ’s

areactivation funct| ons.

For predictions, the most popular error function
is the sum-of-squared errors, or one of its scaled
versons. Thisisanaogousto using theminimum least
squaresoptimization criterioninlinear regression. Like
least squares, the sum-of-squared errorsis calcul ated
by looking at the squared difference between what the
network predictsfor each training pattern and thetar-
get value, or observed value, for that pattern. Thisis
givenas.

E__zz(tu i) (2)

Where, N isthetotal number of training cases, Cis
equal to the number of network outputs, t. isthe ob-
served output for thei™ training case and the " net-
work output, and t| is the network’s prediction
for that case. As the number of training patternsin-
creases, the sum-of-squared error increases. Asare-
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ault, itisoften useful to usetheroot-mean-square (RMS)
error instead of the un-scaled sum-of-squared errors.
TheRMSexpressonisgivenas.

2
ERMS = 1’:\11 JC
ZZ(tij _f )2 (3)

where t isthe average output, given as:

155 (4)

Similar to E”YS, ascaled version of the Laplacian
error(L™9) can be calculated using the following
formula

C
2l

d=tj=r

ilt 1) (5)

1=

Mz

-

LRMS i=

0 Mz

-

Gradient based network learningalgorithm

Optimization of ANN’s are concerned with the
minimization of aparticular objective function with
respect to certain constraints. ANN’s are proven
highly efficient optimization tools. The objective of
the network training isto find the optimal weightsto
minimize the errors between the prediction and the
actual response. A popul ar criterion isthe minimum-
squares error between the prediction and the actual
response. There are many different types of ANNS,
differing by their network topology and/or learning al-
gorithm. Back-propagation (BP) learning and network
optimization agorithm, which isone of themaost com-
monly used d gorithmsisdes gned to predict the output
parameters.

Network training uses one of severd possibleopti-
mization methodsto minimizethiserror term. Thereare
various BP agorithms such as Scaled Conjugate Gra-
dient (SCG), Levenberg-Marquardt (LM), Gradient
Descent with Momentum (GDM), varigblelearning rate
Back propagation (GDA) and Resilient back Propa-
gation (RP).[8, Thereisvariety of network optimiza-
tion techniquesthat uses gradient of afunctionto be
optimized. Thegenerd ideabehind theso-called quasi-
Newton optimization techniquesisto build up an ap-
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proximate expression for the Hessian matrix or thein-
verseHessian, and useit to take an approximate New-
ton step. Themost recently developed highly efficient
version of thequasi-Newton optimization methodsis
the BFGS algorithm*21, which haslargely replaced
theclassca Davidon-Hetcher- Powd | (DFP) dgorithm.
The Hessanmatrix describestheloca curvature of
afunction of many variablesin an optimization prob-
lem. ThisHessian matrix H?2%! in genera canbeap-
proximated as:
H=J"J
and the gradient can be computed as
g=1J'e @)
Where, Jisthe Jacobian matrix which containsfirst
derivatives of the network errorswith respect to the
weights. J'isthetranspose of matrix Jand eisavector
of network errors. The J matrix can be computed
through astandard back propagationtechniquethat is
lesscomplex than computing the Hessian matrix.
Ingenera, the quasi-Newton method was derived
from quadratic objectivefunction. Theinverseof the
Hessan matrix, H (showninegn. 6) isused to biasthe
gradient direction.
B=H" ®
Inthe quasi-Newtontraining method, thewei ghts
areupdated using thefollowing iterative procedure,
W, =W, -nBg ©
Thematrix B here need not be computed. It issuc-
cessively estimated employing rank 1 or rank 2 up-
dates, following eachlinesearch inasequenceof search
directions. Thisisagorithmicdly givenasfollows
B, =B, —AB, (10)
Inthisiterativeadgorithm, B-1isthepreviousvaue
of B.
Thetwoimportant gorithmic relationshipsto com-
pute AB, areasfollows* I

(6)

AB — ddT _ Bl—lAgAgT B|—1
'"d'Ag  Ad' B, Ag

(11)

Theabove expression pertainsto DFP agorithm.
Alternatively, BFGS agorithm can be invoked us-
ingegn.11

Ag'B,-1Ag dd" dAg" B -1+B —1Agd"
AB, = (1+ —— e P
d Ag d'Ag d’Ag
Where,
Research & Reotews On
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d =W, —-W,_, and Ag =0, -0, AB = Bi _Bi-l

The BFGSagorithm hasthe advantageover DFP
in that it does not require accurate line minimiza-
tions along the quasi-Newton directionsto build up
the approximate Hessian matrix. Thus, BFGS po-
tentially reduces the number of function evaluations
required to achieve an optimization procedure.

IMPLEMENTATION OFTHEANN MODEL
FORBOILER OXIDE SCALE PREDICTION

Severa chemical mechanisms contribute to the
formation of oxide scale during operation of coal
fired boiler. Thelimitation in acquisition of real time
dataduring boiler operation and subsequent critical
analysis is probably one of the mgor obstacles in
building a database for data-driven modeling and
online applications of Al based expert systemin a
plant.

Activation function for network training

Theactivationfunctionsand itsderivativesusedin
the present ANN model are shownin TABLE 2. In
order to obtain the best network functionality, three
optimal networks architecture has been generated.
The nine numbers of input neuronsrepresenting the
water chemistry and operating parameters (pH, spe-
cific conductivity, total dissolved solid, total iron
concentration, silicaconcentration, phosphate concen-
tration, sodium concentration, dissolved oxygen level
of the feed water and heat flux) have been selected.
One output neuronsrepresent the scadedeposition rate.

Theactivationfunctioninthehiddenlayer was se-
lected to beasigmoid function:

-
1+exp(-x)

f(x)
(13)

An error back-propagation algorithm was
adopted to learn the weightsin theANN

Network ar chitectureand input-output variables

Theinput, output variables and their dataranges
for a250 MW typica Indian coal fired boiler sys-
tem used in the ANN models are shown in TABLE
3. The operating temperature range and pressure
rangesfor feed water inthewater wallsfor the desig-
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TABLE 2 : Activation functions and its derivatives used in neural model

Activation Function f(a) f'(a)
Linear f(a=a f(a)=1
1 ‘
Logistic f(a)= — f(a)=f(@l-f(a)
l1+e
Hyperbolic-tangent f (a) =tanh(a) f'(a) = sech®(a) =1—tanh?*(a)
a . 1 2
uash f(a)= f@=——-—=0-1f@)
> @l @+ la))’
TABLE 3: Operating data range of a typical Indian 250MW boiler for the ANN model
I nput Parameters Data Range
1 Boiler fead water operaing pH range 88-9.2
2 Specific conductivity (micro-seimens/cm) 3.0-80
3  Total dissolved solids (ppm) 5-10
4  Total iron concentration (ppb) 5-10
5 Silica concentration (ppm) 0.02-0.06
6 Phaosphate concentration (ppm) 15-50
7 Sodi um concentration (ppb) 5-10
8 Dissolved oxygen concentration (ppb) 5-10
9.  Heatflux opaatingrange (KW/m?) 50-300
Output Parameter
1 Measured scale depositionrate (kg/m2.seq). 10 4.10%-12.10

nated boiler are 300-350C and 150-170 Kg/cm? re-
spectively. Input data set is segmented into three
subsets, namely, one for training (learning),one for
selection (validation), and one for testing (predic-
tion) using roughly 2:1:1 ratio. Out of 600 dataset
from plant measurements, 300 dataset areused astrain-
ing samples, 150 asvalidation samplesand theremain-
ing 150 sampleshave been utilized for prediction. The
basisof selection of thesethree dataset for training, se-
lection, and testing has been random. In order to obtain
the optimum network, 20 networksarefirst designed
with nineinput neurons and one output neuron, four
hidden layer is considered for the network. In total,
twenty networks have been trained, out of which the
best three network configurations have been chosen
for prediction. The basic philosophy of MLP based
network isthat, too few neuronsin the hidden layer
may introduce higher error during network sdlectionin
themodel, wheretherel ations between different vari-
ablesare not well devel oped. On the other hand, too
many neuronsin the hidden layer causethe model to
over-fit thetraining data, resultingin alessoptimal so-

lution for selection data. The neural prediction based
on three network architectures(MLP 9-4-1, MLP 9-
6-1 and MLP 9-5-1) are compared with the regres-
sionfit between predicted and measured (test) oxide
scaledeposition rate data. It may be observed fromthe
smulation resultsthat al thesethree network architec-
tureshavedmost similar accuracy leved. Typicaly, the
network architecture nomenclature, (say) MLP9-4-1
specify amulti layer perceptron network and the sub-
sequent digitsindicate the number of input neurons(9),
the number of hidden neurons(4) and number of output

neurons(1) respectively
RESULT AND DISCUSSION

The present ANN simulation isbased on the data
measured fromatypical Indian operating power plant.
Figure 5 depictsneura prediction of oxide scaledepo-
sition rate on boiler water wall tubes made of carbon
steel inan operating heat flux regime of 50-300 KW/
m?. Theneurd predictionsarefoundtobeinexcellent
agreement withthemeasured data. Thisestablishesthe
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Figure 5 : ANN prediction and validation with the test data of oxide scale deposition rate on boiler tubes

efficient predictivecapability of theANN modd incon-
junction with the proposed optimal network architec-
ture. Figure 6 shows predicted oxide scale deposition
rate asafunction of heat flux acrosstheboiler tubes. It
may be observed from the figure that the deposition
rate monotonically increaseswith elevated heat flux.
Further, these scd edepositionratevariesfrom 4.6 x10
8 kg/m?-sec to 11x108kg/m?-sec (appox) with respect
to heat flux operating regimeof 50— 300 KW/n?. This
isattributed to the phenomenon that asthe energy sup-
pliedintheform of heat increases, thenumber of nucle
formed asoincreases. All nuclei do not becomescae
particles, and ableto reach the surface. Only those par-
ticlesthat have adequate energy and massare ableto
reach the surface of thewater wallsand deposit onit.
With anincreasein heat flux the more proportion of
particles making scale enhances. Figure 7 showspre-
dicted oxide scaledeposition rate asafunction of pH
of boiler feed water. It may be observed fromthefigure
that the oxide scal e deposition rate monotonically de-
creaseswithincreased pH value (within the specified
range) of the boiler feed water. The oxide scal e depo-
stionratevariesfrom 10.3x108 kg/m?-secto 4.5x10
8 kg/m?-sec (appox) with respect to pH range of feed
water, 8.8-9.4. The predictionsconformto therealis-
tic operational conditions??. MaintainingapH of 9 or
greater reduces both the potential for ferrous aloy
equipment failureand thereturn of iron corrosion prod-
uctsto theboiler feed water. In accordance with plant

Rescarch & Reotews On

observation29, too high pH (> 10) may initiate caus-
tic gouging because gouging of boiler tubes has been
commonly attributed to the dissolution of aprotective
magnetitefilm dueto caustic attack, followed by pre-
cipitation of anon-protective magnetite scale. Figure8
shows predicted oxide scaledeposition rate asafunc-
tion of total dissolved solids(TDS) intheboiler feed
water. It may beobserved from thefigurethat thescale
deposition rate gets enhanced with increased va ue of
TDSin feed water. The scale deposition rate varies
from 4.8 x10® kg/m?-sec to 10.7 x10® kg/m2-sec
(appox) with respect to TDSrange of feed water i.e4-
10 ppm. High TDSwater tendsto foam which, when
carried over by steam, leads to corrosion and
depositition on hesat transfer surfaces. Figure 9 shows
predicted oxide scal e deposition rate asafunction of
iron content present inthe boiler feed water. It may be
observed fromthefigurethat theiron scaledeposition
rate enhanceswith increased value of iron content of
boiler feed water whichisconsistent with therealistic
observation 2226271 The oxide scale deposition rate
variesfrom 4.9 x10°8 kg/m?-sec to 10.6 x10-8 kg/m?-
sec (appox) with respect to total iron content of feed
water intherange 0.4 - 0.8 ppm. When theincreased
concentration of iron corrosion productsin boiler wa
ter exceedsiron solubility limit consequently leading to
enhanced scaledeposition. Figure 10 depictsvariation
of predicted scaledeposition asafunction of silicacon-
tent of feed water. It may be observed from thefigure
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that thetotal scale deposition rate enhanceswithin-
creased value of silica content of boiler feed water.
Higher concentration of silicagenerdly precipitatesdi-
rectly on theboiler heat transfer surfacesand aremuch
harder to remove from the boiler components. Figure
11 depictsvariation of predicted scaedepositionasa
function of specific conductivity of feed water. It may
be observed from thefigurethat the oxide sca e depo-
sition rate enhances with increased val ue of specific
conductivity of boiler feed water. High specific con-
ductivity of feed water isaconsequenceof high TDSin
thesamewhichincidentally leedsto deposition of scales.
Figure 12 depictsvariation of predicted scale deposi-

tion asafunction of dissolved oxygen content of feed
Research & Reotews On

water. It may be observed from thefigurethat the ox-
ide sca e deposition rateenhanceswith increased value
of dissolved oxygen content of boiler feed water. High
dissolved oxygeninthefeed water resultsintheforma:
tion of increased iron corrosion product namely, hema-
titewhich eventualy leadsto deposition. Thetraining
andtesting error evolution asafunctionof trainingcycles
duringANN smulationisshownin Figure 131t may be
observed fromthisfigurethat the absol ute error drops
sharply from 0.06 to 0.01 at the very early stage of
training (few cycles) and subsequently thetraining and
testing errorsasymptotically reducesto a most zerowith
further increaseinthe number of cycles. It may befur-
ther noted that the deviationsin the measured dataand
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neura predictionsaresubstantialy small. The present
neural model with the selected architecture demon-
strated accurate predictive capability of the model.
Thereisscopeof further improvement of themodel by
incorporating more processand operationd parameter
asinputsunder redlistic plant operating conditions.

CONCLUSION

Thispaper providesabrief ANN modeling frame-
work for prediction of the oxide depositionrate onthe
water wall tubesof acod fired boiler using plant gener-
ated datawith good learning precision and generdiza
tion. Resultsof theneura network predictionsarevali-
dated with those obtai ned from both plant and litera-
turedata. Themain conclusionsareasfollows:

The proposed neural network model providesa
reasonably accurate predictiveframework and com-
pareextremey wdl with the plant and experimenta data
TheANN approach shows good potential for predic-
tionsof the deposition rate of oxide scaleasafunction
of input variables, namely heat flux, pH, TDS, specific
conductivity, iron concentration, silicacontent, phos-
phate content, sodium content and dissol ved oxygen
concentration of thefeed water. Thismode hasarela
tive advantage over other phenomenol ogica and semi
empirica mode streating polluted dataor thedatawith
complex functional dependence. Effectsof water chem-
istry and process parameters on the scale deposition
behavior have beeninvestigated. In thenumerica do-
main, it hasbeen found that BFGSisan effective opti-
mization agorithm that does not require computation of
numericaly cumbersomeHessian matrix, or caculation
of any matrix inverses. Thisalgorithm potentially re-
ducesthe number of function evaluationsrequiredto
achieveanetwork optimization facilitating faster con-
vergenceof training error within afew cycles.
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