
Full Paper

Analytical solution of non-linear reaction diffusion equations in an
amperometric immobilized enzyme electrode

M.Uma Maheswari, L.Rajendran*
Department of Mathematics, Madura College, Madurai - 625 011, Tamil Nadu, (INDIA)

E-mail: raj_sms@rediffmail.com
Received: 20th June, 2011 ; Accepted: 20th July, 2011

KEYWORDS

Amperometric electrodes;
Non-linear reaction-diffusion

equations;
Redox enzyme;

Michaelis-Menten kinetics;
Homotopy perturbation

method.

ABSTRACT

The boundary value problem in basic enzyme reactions is formulated and
approximate expressions for mediator and substrate concentration are pre-
sented. This investigation contains a non-linear term related to Michaelis-
Menten kinetics. In this paper, we obtain the approximate analytical solu-
tions for the non-linear reaction diffusion equations that describe the
diffusion and the reaction within a uniform film containing immobilized
enzyme and mediator at an electrode surface. Analytical expression per-
taining to the mediator and substrate concentration profiles and current
response were reported for all possible values of dimensionless parameter
, ,  and . An approximate expression of flux is also derived. The
obtained concentration results are compared with the numerical solution
acquired using Scilab program and found to be in satisfactory agreement.
 2011 Trade Science Inc. - INDIA

INTRODUCTION

In recent times, amperometric immobilized enzyme
electrodes are finding increasing application in analyti-
cal chemistry and in electrochemical sensors[1,2]. These
electrodes incorporate the specificity of the enzyme to-
gether with the rapid analysis time of the electrochemi-
cal detection. Rahamathunissa and Rajendran[3] acquired
the analytical solutions for substrate concentration and
transient current for both steady-state and non-steady-
state amperometric polymer-modified electrodes by
means of Danckwerts� relation. Andrieux et al.[4] and
Albery and Hillman[5] analyzed the kinetics of reactions
at polymer-modified electrodes.

During these reactions, species from the solution

react with a mediator that was bound in a film at the
electrode surface. The approximate analytical solutions
can be acquired by linearizing the non-linear term[6]. In
the case of an immobilized enzyme, the problem is fur-
ther intricate by the non-linear enzyme kinetics. For the
enzyme kinetics problem, approximate analytical solu-
tions have been developed by Blaedel et al.[7], Kulys et
al.[8] and Bartlett and Pratt[9] for the limiting cases (satu-
rated and unsaturated). The relevance of numerical and
approximate analytical methods can be perceived by
Flexer et al.[10].

Recently, Senthamarai and Rajendran[11] derived
the approximate analytical expressions for the substrate,
mediator concentrations and current for the non-linear
Michaelis-Menten kinetic scheme in a system of
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coupled non-linear reaction-diffusion processes at con-
ducting polymer-modified ultramicroelectrodes using
the variational iteration method. More recently, for
steady state conditions, Loghambal and Rajendran[12]

obtained the approximate analytical solutions for the
non-linear equations that describe diffusion and the
reaction within the film by employing the Homotopy
perturbation method. However, for non steady state
conditions, there were no analytical results available
till date that corresponds to the mediator concentra-
tion and substrate concentration for all likely values of
dimensionless parameters , ,  and . In this paper,
we present the approximate analytical expressions for
the concentrations of the mediator and substrate. The
flux is determined corresponding to all possible values
of the parameters , ,  and . These parameters are
explained below in Eq. 10. Moreover, herein we em-
ploy �Homotopy Perturbation Method� (HPM) to
solve the non-linear reaction equation[13,14].

MATHEMATICAL FORMULATION OF
THE PROBLEM AND ANALYSIS

Figure 1 illustrates the common kinetic design for an
enzyme-membrane/electrode. A and B are the oxidized
and reduced forms of the mediator. E

1
 and E

2
 are the

oxidized and reduced forms of the enzyme. S and P are
the substrate and the product of the enzymatic reaction,
respectively. Diffusion of mediator A and substrate S
arise within the film with diffusion coefficients

 
D

A
 and D

S
,

respectively. Partition of the substrate between the film
and the bulk solution is depicted by the partition coeffi-
cient K

S
. The mediator partition is expressed by K

A
.

The reactions that occur within the film (Figure 1) in the
kinetic scheme can be written as follows[6]:

1
Ak

2 EBEA  (1)

PESE 2
Ek

1  (2)

and the reaction at the electrode is B  A. Here, k
E

and k
A
 are second-order rate constants that describe

the reaction between the enzyme and the substrate and
between the enzyme and the mediator, respectively.
According to Michaelis-Menten kinetics, the following
is true:

]S[K
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M

cat
E


 (3)

where k
cat

 stand for the catalytic rate constant, and K
M

denotes the Michaelis-Menten constant. The homog-
enous enzyme kinetics is elucidated by Eqs. 1-3 occur
throughout the film from x = 0 to x = l, where l is the
thickness of the membrane. We consider a situation in
which the mediator is entrapped within the film. This
situation does not include a separate soluble redox me-
diator that is re-oxidized on a conducting entrapment
matrix. Here, the rate constants for a heterogeneous re-
action on the supporting matrix must be considered. The
differential equations that quantify the diffusion and re-
action within the film may be written as follows[6,9]:
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Assuming that the enzyme is bound within the film, is
not free to diffuse and is in the steady- state d[E

1
] / dt =

0, Eq. 6 leads to the following:
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where [E

] = [E

1
] + [E

2
] denotes the total concentra-

tion of the immobilized enzyme. Then, in the non steady-
state, Eq. 4 and Eq. 5 are reduced to the following:
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Eq. 8 and Eq. 9 are solved for the following boundary
conditions:
t = 0, [A] = [A]


, [S] = [S]K

S
(9a)

x = 0, [A] = [A]

, [S] / x = 0 (9b)

and
x = l, [A] / x = 0, [S] = [S]K

S
 = 0 (9c)

We make the non-linear differential Eq. 8 and Eq. 9
dimensionless by defining the following parameters:
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We can assume that D = D
A
 = D

S
. Here a is the dimen-

sionless concentration of the mediator and s is the di-
mensionless concentration of the substrate.  is the nor-
malized distance from the electrode/membrane inter-
face.  describes the equilibrium constant between the
diffusion of B within the film and its reaction with the
enzyme. l is the film thickness.  denotes the relative
quantity of depletion of the substrate and oxidized me-
diator within the film. The parameter  represents the
equilibrium constant between the two forms of the en-
zyme. The ratio of the substrate concentration within
the film to the Michaelis constant is described by .
The subscript  denotes the concentration in the bulk
solution. a and s are normalized with respect to the
total concentrations K

A
[B

S
] and K

S
[S] of the two

species within the film, where [B

] = [A] + [B],

K
A
[B


] = [B


], and K

S
[S] = [S] + [P]. When  <<

1, B can diffuse across the film before it reacts with the
enzyme. For  << 1, consumption of the substrate is
greater than mediator reduction, and for  >> 1, the
mediator reduction is greater than consumption of the
substrate. For  << 1, all of the enzymes are in the E

2

form. For unsaturated Michaelis-Menten kinetics,  <<
1. For saturated kinetics,  >> 1, Eq. 8 and Eq. 9
reduce to the following dimensionless forms[6]:
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The initial and boundary conditions for Eq. 11 and Eq.
12 are as follows:
 = 0, a = a


, s = 1 (12a)

 = 0, a = a

, s /  = 0 (12b)

and
 = 1, s = 1, a /  (12c)

The parameter  is the dimensionless potential, which
can be defined as
 = (E - E0)nF / RT (13)

where E is the potential of an electrode, E0 is the stan-
dard potential of an electrode, n is the number of elec-
trons, F is the Faraday constant, R is the universal gas
constant and T is the absolute temperature. Combining
the Nernst equation E = E0 + (RT / nF) ln ([A]

0
 / [B]

0
)

and Eq. 13 gives the dimensionless oxidized mediator

concentration a

 at the electrode surface:

a

 = 1 / [1 + exp(-)] (14)

Here [A]
0
 and [B]

0
 denote the concentration of the two

forms of the mediator at the electrode surface. Eq. 14
gives the boundary condition for a at the electrode sur-
face. The dimensionless flux of substrate (J

S
) consumed

at the electrode is considered as the following:
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and that of the mediator (J
obs

) measured at the elec-
trode is as follows:
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With respect to the boundary condition, the flux of the
substrate reacting within the film is equal to the observed
flux: J

obs
 = J

S
.

SOLUTION OF BOUNDARY VALUE
PROBLEM USING THE HPM

Recently, many authors have applied the HPM to
various problems and demonstrated the efficiency of
the HPM for handling non-linear structures and solving
various physics and engineering problems[15-18]. This
process is a combination of homotopy in topology and
classic perturbation techniques. Ji-Huan He used the
HPM to solve the Lighthill equation[19], the Duffing equa-
tion[20] and the Blasius equation[21]. The idea has been
used to solve non-linear boundary value problems[22],
integral equations[23-25], Klein-Gordon and Sine-Gor-
don equation[26], Emden-Flower type equations[27] and
various other problems. This wide variety of applica-
tions shows the power of the HPM to solve functional
equations.

The HPM is unique in its applicability, accuracy and
efficiency. More recently, Meena and Rajendran[28-31]

presented an analysis of system of coupled non-linear
reaction diffusions within an electroactive polymer film
deposited on an inlaid microdisc electrode using HPM
which uses the imbedding parameter p as a small pa-
rameter, and only a few iterations are needed to search
for an asymptotic solution. Using this method (see
Appendix B), we can obtain the following solution to
Eq. 11 and Eq. 12:
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Eq. 17 and Eq. 18 represents the analytical expression
of the mediator concentration and the substrate con-
centration for all values of the parameters , ,  and 
and satisfies the boundary conditions Eqs. 12a-c. We
can obtain the dimensionless flux, which is as follows:
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Eq. 19 is the new approximate expression of the flux.

NUMERICAL SIMULATION

The nonlinear differential equations Eq. 11 and Eq.
12 are also solved by using numerical methods. The func-
tion pdex4 in Matlab software which is a function of
solving two-point boundary value problems (BVPs) is
used to solve those equations. Its numerical solution is
compared with the solution obtained by using Homotopy
perturbation method and it gives a satisfactory result.
The Scilab program is also given in Appendix C.

RESULTS AND DISCUSSION

Eq. 17 and Eq. 18 are the new and simple analyti-
cal expressions of concentrations of the mediator and
the substrate for all values of parameters , ,  and .
The dimensionless analytical expressions of concentra-
tion a and s for various values of dimensionless reaction
parameters versus the dimensionless time  compared

with numerical solution. From Figure 2a it is inferred
that when  increases the value of the concentration of
the mediator increases for the fixed vaues of k = 10
and  = 100. Figure 2b represents the increase of me-
diator for the fixed values of k = 1 and  = 10 when 
is varied. Figure 2c indicates the gradual decline of the
mediator when k increase for the fixed values  = 1, 
= 5 and  = 100. Figure 3a represents the decrease of
the substrate concentration when  increases for the
fixed values of  = 1,  = 5 and  = 100. Figure 3b
represents the increase of the substrate concentration
when  increase for the fixed values  = 0.01, k = 1
and  = 100. Figure 3c represents the rise of the sub-
strate concentration when  increases for the fixed val-
ues k = 1,  = 1 and  = 100. Figure 3d represents the
decline of the substrate concentration when  increases
for the fixed values  = 0.01, k = 1 and  = 1. Figures
4a-c represents the flux and it abruptly reaches the
steady state value when  = 1 for all values of ,  and
k. Also, the value of flux increases when the diffusion
parameter  and  decreases while  increases. From
the Figure 4c, it is inferred that the flux mainly depends
upon the equilibrium constant .

Figure 1 : Schematic representation of a typical enzyme-mem-
brane electrode showing the processes considered in the
model[6]. The homogenous enzyme kinetics that occurs
throughout the film is described by Eqs. 1-3.



M.Uma Maheswari and L.Rajendran 195

Full Paper
PCAIJ, 6(4),  2011

Physical CHEMISTRYPhysical CHEMISTRY
An Indian Journal

Figure 2 : Profile of the two-dimensional diagram of the normalized mediator concentration a versus the normalized distance
 when (a) k = 10,  = 100 and a

 
= 1 for various values of ; (b) k = 1,  = 10 and a


 = 1 for various values of ; (c)  = 1,  = 10

and a

 = 1 for various values of k. The concentrations were computed using Eq. 17.

(a) (b)

(c)

(b)(a)

Figure 3 : Profile of the two-dimensional diagram of the normalized substrate concentration s versus the normalized distance
 when (a)  = 1,  = 5,  = 100 and a


 = 1 for various values of ; (b)  = 0.01, k = 1,  = 100 and a


 = 1 for various values of ;

(c) k = 1,  = 1,  = 100 and a

 = 1 for various values of ; (d)  = 0.01, k = 1,  = 1 and a


 = 1 for various values of . The

concentrations were computed using Eq. 18.

(c)
(d)
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linear equations. To explain this method, let us consider
the following function:
D

o
(u) � f(r) = 0, r   (A1)

with the boundary conditions of





r            ,0)

n
u

 ,u(Bo (A2)

where D
o
 is a general differential operator, B

o
 is a bound-

ary operator, f(r) is a known analytical function and  is
the boundary of the domain . In general, the operator
D

o
 can be divided into a linear part L and a nonlinear

part N. Eq. A1 can therefore be written as
L(u) + N(u) � f(r) = 0 (A3)

By the homotopy technique, we construct a homotopy
(r, p) :   [0,1]   that satisfies
H(, p) = (1 � p)[L() � L(u

o
)] + p[D

o
() � f(r)] = 0 (A4)

H(, p) = L() � L(u
o
) + pL(u

o
) + p[N() � f(r)] = 0 (A5)

where p [0, 1] is an embedding parameter, and u
0
 is

an initial approximation of Eq. A1 that satisfies the
boundary conditions. From Eq. A4 and Eq. A5, we
have
H(,0) = L() � L(u

0
) = 0 (A6)

H(,1) = D
o
() � f(r) = 0 (A7)

When p=0, Eq. A4 and Eq. A5 become linear equa-
tions. When p =1, they become non-linear equations.
The process of changing p from zero to unity is that of
L() � L(u

0
) = 0 to D

o
() � f(r) = 0. We first use the

embedding parameter p as a �small parameter� and
assume that the solutions of Eq. A4 and Eq. A5 can be
written as a power series in p:
 = 

0
 + p

1
 + p2

2
 + � (A8)

Setting p = 1 results in the approximate solution of
Eq. A1:

...vvvvlimv 210
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
 (A9)

This is the basic idea of the HPM.

Appendix B

Approximate analytical solutions of the mediator
and substrate

Using the HPM, we construct a homotopy for Eq.
11 and Eq. 12 as follows:
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Figure 4 : Diagrammatic representation of the dimension-
less flux against the dimensionless time  when (a) k = 0.1,
 = 0.1 and  = 10 for various values of ; (b) k = 1,  = 0.1
and  = 1 for various values of ; (c)  = 0.1,  = 0.1 and  =
1 for various values of k. The concentrations were computed
using Eq. 19.

(b)

(c)

(a)

APPENDIX

Appendix A

Basic concepts of the HPM

The HPM method has overcome the limitations of
traditional perturbation methods. It can take full advan-
tage of the traditional perturbation techniques, so a con-
siderable deal of research has been conducted to apply
the homotopy technique to solve various strong non-
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The approximate solution of B1 is
a = a
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 + ........ (B3)

and the approximate solution of B2 is
s = s

0
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Substituting Eq. B3 into Eq. B1 and arranging the coef-
ficients of p powers, we have
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Substituting Eq. B4 into Eq. B2 and arranging the coef-
ficients of p powers, we have
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The initial approximations are as follows:

a
0
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0  , 0)0(s'
i   for all i =1,2,3,� (B10)

From Eq. B5 we get
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From Eq. B7 we get

s
1

s0  (B12)

Substituting Eq. B11 and Eq. B12 into Eq. B6, we ob-
tain the solution to Eq. B6:
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Substituting Eq. B11 and Eq. B12 in Eq. B8 and then
solving we get
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Adding Eq. B11 and Eq. B13, we get Eq. 17 (the con-
centration of the mediator, a) in the text. Similarly, by
adding Eq. B12 and Eq. B14 we get Eq. 18 (the con-
centration of the substrate, s) in the text.

Appendix C

function pdex4
m = 0;
x =linspace(0,1);
t =linspace(0,100);
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t)
u1 = sol(:,:,1);
u2 = sol(:,:,2);
figure
plot(x,u1(end,:))
title(�u1(x,t)�)
figure
plot(x,u2(end,:))
title(�u2(x,t)�)
function [c,f,s] = pdex4pde(x,t,u,DuDx)
k = 1;
 = 0.1;
 = 0.01;
 = 1;
c = [1; 1];
f = [1; 1].* DuDx;
F1 = -(k^2*u(1)*u(2))/(*u(1)*(1+*u(2))+u(2));
F2 = -(*k^2*u(1)*u(2))/(*(*u(1)*(1+*u(2))
+u(2)));
s = [F1; F2];
function u0 = pdex4ic(x);
u0 = [1; 1];
function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)
pl = [ul(1)-1;0];
ql = [0;1];
pr = [0;ur(2)-1];
qr = [1;0];

CONCLUSIONS

This paper presents a mathematical treatment for
analyzing amperometric enzymatic reactions. We have
obtained a theoretical model describing the concentra-
tion of the mediator and the substrate. We have de-
rived the flux which is described in terms of the dimen-
sionless parameters , ,  and . A simple closed form
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of analytical expressions of non steady -state substrate
concentration profile to all possible values of the reac-
tion/diffusion parameter , ,  and  are derived using
Homotopy Perturbation Method. Furthermore, we have
also presented an analytical expression for the flux in
non steady state. This method is an extremely simple
method and it is also a promising method to solve other
non-linear equations. The solution procedure can be
easily extended to all kinds of non-linear equations with
various complex boundary conditions in enzyme-sub-
strate reaction diffusion processes.
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