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ABSTRACT 
 
In this paper, by using new linear linearization method we present an optimization
algorithm for globally solving a class of multiplicative problems which have a broad
application in biotechnology, information technology, and so on. By utilizing
characteristic of quadratic function, a series of linear relaxation programming problem of
the initial problem can be derived and which can provide a reliable lower bound. By
means of the subsequent solutions of a sequence of linear relaxation programming
problems, the proposed optimization algorithm converges to the global optimal solution of
the initial problem. Numerical experimental results show that the proposed algorithm is
feasible and effective. 
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INTRODUCTION 
 
 In this paper, we shall consider the following a class of multiplicative problem: 
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 In last many years, many research have been done on solving the multiplicative problem (MP). On the one hand, this 

is since this problem (M)) exists many important applications in economic planning, engineering designing, financial plan, 
robust optimization [1-6], and so on. On the other hand, it is because that the problem (MP) usually poses many significant 
theoretical challenge and computational difficulties, i.e., it is well known that the problem (MP) possesses multiple local 
optimal solutions which are not globally optimal solution. For instances, when 1p =  , the problem (MP) is a special case of 
nonconvex programming problems, which is well known to be NP-hard [7]. Therefore, it has attracted interest of many 
researchers and practitioners. 

 Up to today, although many feasible algorithms have proposed for solving the multiplicative problem (MP), but to 
our knowledge, few algorithm has been still designed for globally solving the multiplicative problem (MP). 

 Many algorithms have proposed for linear multiplicative programming problem (MP). For example, a large number 
of quadratic programming methods can be obtained to solve the multiplicative problem (MP) in the literatures [8-13]. When 
feasible region is a polyhedral set and 2p ≥ , the branch and bound algorithms, the approximating algorithms, the outcome 
space branch and bound approaches, the cutting plane methods, the heuristic methods, the monotonic optimization 
approaches, the simplicial branch and bound algorithms can be used to solve the problem (MP) in [14-28]. Recently, the 
authors in [29-32] presented several different feasible and effective algorithms for solving the generalized linear 
multiplicative programming problem (MP). In addition, some feasible global optimization algorithms for solving generalized 
nonlinear multiplicative programming problem have been proposed in [33-37]. 

 In this article, we will present a feasible algorithm for the problem (MP) by solving a series of linear relaxation 
programming problems over partitioned subsets. To globally solve the problem (MP), we first transform the problem (MP) 
into an equivalent quadratic programming problem (EP), then, a new linearization technique is used to systematically convert 
the problem (EP) into a sequences of linear relaxation programming problems. The optimal solutions of these transformed 
problems can approximate sufficiently the global optimal solution of the problem (EP) by a successive partition process. 
Finally, numerical examples and their computational results are given, and numerical results show that the proposed 
algorithm can be used to solve all the test problems in computing the global optimal solutions of the multiplicative problem 
(MP) within a given tolerance condition. 

 The paper is described as follows. In Sections 2, first we convert the problem (MP) into an equivalent problem (EP), 
then a new linearizing method is proposed for generating the linear relaxation of the problem (EP). In Section 3, using the 
new linearizing method, a branch and bound algorithm is established for globally solving the (EP), and the convergence of 
the proposed algorithm is proved. Some numerical results are reported in Section 4 and Section 5 provides some concluding 
remarks. 

 
NEW LINEARIZATION METHOD 

 
 Using Firstly, we shall convert the objective function of the problem (MP) into an equivalent quadratic function. 
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 Define the matrix ( )ik n nQ Q ×= , where ikQ  is a component of Q , define the vector B , where iB  is thi  a component 
of B . Obviously, the problem (MP) can be converted into the following equivalent quadratic programming problem: 
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 Hence, we can establish the linear relaxation programming (RLP) of the problem (EP) over kS  as follows:  
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 Denote ( )kSν  and ( )kLB S  as the global optimal value of the problem EP( )kS and the problem RLP( )kS , 
respectively. Obviously, we have  

( ) ( ).k kS LB Sν ≥  
 Theorem 1. For any kx S∈  , we have the following conclusions: 
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Proof. By the expression of the function ( )g x  and ( )Lg x , for any kx S∈ , we can get that 
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 Therefore, 
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 Based on the above new linearization method, we can construct the linear relaxation programming (LRP) of the 

problem (EP), which can offer a valid lower bound for the global optimal value of the problem (EP) over rectangle kS . 
 

BRANCH AND BOUND ALGORITHM AND ITS CONVERGENCE 
 

 Tables In this section, based on the former linearization technique, an effective branch and bound algorithm is 
proposed for globally solving the problem (EP). To compute the global optimization solution of the problem (EP), the 
proposed algorithm needs to solve a series of linear relaxation programming problem over partitioned subsets of 0S . 
Furthermore, to guarantee that the proposed algorithm is convergent to the global optimal solution. 

 The proposed algorithm is based on subdividing the set 0S into two sub-hyper-rectangles, and each sub-hyper-
rectangle is corresponding to a node of a branch and bound tree, and each node is corresponding to a linear relaxation 
programming problem in the associated sub-hyper-rectangle. Therefore, at iteration k  of the proposed algorithm, assume that 
we get a collection of active nodes represented as kΩ , say, each is associated with a hyper-rectangle 0 , .kS S S⊆ ∀ ∈Ω  For 
each such node S , we will calculate a lower bound ( )LB S  of the  problem (EP) by solving the problem (RLP). Therefore, 
the lower bound of global optimal value of the problem (EP) on the whole initial rectangle 0S  at iteration k  is given by  

min{ ( ), }.k kLB LB S S= ∀ ∈Ω  
 As the optimal solution of the relaxation linear programming problem (RLP) is feasible to the problem (EP), we 

renew the upper bound kUB  of the problem (EP), if necessary. Therefore, the active nodes collection kΩ  satisfy 
( ) ,LB S UB<  kS∀ ∈Ω , at any stage k . We now select an active node to partition its associated hyper-rectangle into two 

sub-hyper-rectangles as described below, computing the lower bounds for each new node as before. Upon detecting any non-
improving nodes, we can get the collection of active nodes for the next iteration, and this process is repeated until the 
condition of the convergence is satisfied. 

 The critical element in guaranteeing convergence to a global minimum is the choice of a suitable partitioning 
strategy. In our paper we choose a simple and standard bisection rule. This method is sufficient to ensure convergence since it 
drives all the intervals to zero for all variables. This branching rule is as follows. 
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 Suppose that the rectangle 
0[ , ]k k kS l u S= ⊆  

 will be divided. Then we will choose the branching variable px satisfying  

arg max{ : 1, 2, }k kp u l i N∈ − = L  
 and subdivide kS by partitioning the interval [ , ]p pl u into the two subintervals 
[ , ( ) / 2]p p pl l u+

 
and [( ) / 2, ]p p pl u u+ .

 
 Assume that ( )kLB S  be the global optimal value of the problem (RLP) over the rectangle kS  and suppose that 

( )k kx x S=  be the global optimal solution of the problem (RLP) over the rectangle kS . The steps of the proposed branch and 
bound algorithm are given as follows. 

 Algorithm statement: 
 Step 0. (Initializing) 
 Let initial the iteration number : 0k = , the initial set of the active node 0

0 { }SΩ = ; the initial upper boundUB = ∞ , 
and the initial set of feasible solution :F = ∅ . 

 Compute 0 : ( )LB LB S= and 0 : ( )x x S=  by solving the problem (RLP) over rectangle 0S S⊆ .  
 If 0x  is a feasible solution of the problem (EP), we update feasible set F and the upper bound UB , if necessary.  
 If 0UB LB ε≤ + , where 0ε >  is a given tolerance constant number, then terminate with 0x  be the optimal solution 

of the  problem (EP). Otherwise, continue to the following Step 1. 
 Step 1. (Bounding)  Choose the midpoint midx of kS , if midx is a feasible solution of the problem (EP), then let 

: { }midF F x= U . 
 And define the upper bound by 

: min ( )x FUB g x∈= . 
 If F ≠ ∅ , denote the best known feasible solution by  

: arg min ( )x Fb xϕ∈= . 
 Step 2. (Subdividing) According to the proposed partitioning rule, choose the branching variable px to subdivide the 

rectangle kS  into two new sub-hyper-rectangles. Denote the set of new partitioned rectangles by kS . 
  For each rectangle kS S∈ , compute the lower bound value Lg

 
of ( )g x  over the hyper-rectangle S . If the lower 

bounds Lg satisfies ,Lg UB> then delete the corresponding sub-hyper-rectangle S  from kS , i.e. 
: \k kS S S= , 

 and skip to next element of kS . 
 If kS ≠ ∅ , compute ( )LB S and ( )x S  by solving the problem (RLP) over the rectangle kS S∈ .  
 If ( )LB S UB> , let : \k kS S S= ; otherwise, renew the obtained UB , F and b  if possible, as step 1. 
 Step 3. (Bounding) The remaining partition set is denoted by 

: ( \ )k k
k k S SΩ = Ω U  

 which can give a new lower bound 
: inf ( )

kk SLB LB S∈Ω= . 
 Step 4. (Termination) Detect non-improving nodes by letting  

1 \{ : ( ) , }k k kS UB LB S Sε+Ω = Ω − ≤ ∈Ω . 
 If 1k+Ω = ∅  , then algorithm terminates with UB  be the optimal value of the problem (EP), and b  is the global 

optimal solution. Otherwise, : 1k k= + , and choose an active node kS  such that 
 arg min ( ), : ( )

k

k k k
SS LB S x x S∈Ω= = ,  

 and continue to Step 1. 
 Theorem 2 (convergence theorem) The proposed branch and bound algorithm either stops finitely with the global 

optimal solution of the problem (EP), or produces an infinite iteration sequence which satisfies any limitation point of the 
sequence { }kx  will be the global solution of the problem (EP) along any infinite branch of the branch-and-bound tree. 

 Proof. The proof of the theorem can be easily given according to Ref. [30]. 
 

NUMERICAL EXAMPLES 
 
 To verify the effectiveness and feasibility of the proposed branch and bound algorithm, several test examples are 
implemented on Intel(R) Core(TM)2 Duo CPU (1.58GHZ) microcomputer, the proposed branch and bound algorithm is 
coded in C++ procedure, the simplex algorithm is used to solve linear relaxation programming problem and the convergence 
tolerance is set as -6=10ε . These test examples and their numerical results are given as follows.  
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 Example 1. 
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 Using the proposed algorithm in this paper, the global ε − optimal solution (1.0,1.0)  and global ε − optimal value 
5.0 is obtained. 

Example 2. 
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 Using the proposed algorithm in this paper, the global ε − optimal solution (1.0,3.0)  and global ε − optimal value -
13.0 is obtained. 

 Example 3. 
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 Using the proposed algorithm in this paper, the global ε − optimal solution (1.0,4.0)  and global ε − optimal value -
22.0 is obtained. 

 From the numerical results for test examples 1-3, we can get that the proposed branch and bound algorithm is 
competitive and can be used to globally solve the generalized linear multiplicative problem (MP). 
 

CONCLUDIONG REMARKS 
 
 In this article, a branch and bound algorithm is proposed to solve the problem (MP). In the algorithm, a new 
linearization method is proposed. By utilizing the method the problem (MP) can be transformed into a series of linear relaxation 
programming problems, which can be used to compute the lower bound of the global optimal value of the problem (MP). The 
proposed branch and bound algorithm is convergent to the global optimal solution of the problem (MP) by solving a series of 
linear relaxation programming problems. Numerical results show the feasibility of the proposed branch and bound algorithm. 
 

ACKNOWLEDGEMENTS 
 
 The authors would like to express their sincere thanks to the responsible editors and the anonymous referees for their 
valuable comments and suggestions, which have greatly improved the earlier version of our paper. 

 The authors acknowledged the help of Prof. Hongwei Jiao from Henan Institute of Science and Technology while 
preparing the paper. 

 This paper is supported by the Foundation for University Key Teacher by the Ministry of Education of Henan 
Province (2010GGJS-140). This paper is also supported by the Science and Technology Key Project of Education 
Department of Henan Province (14A110024). 
 

REFERENCES 
 
[1] Konno H, Watanabe H 1994a Bond Portfolio Optimization Problems and Their Applications to Index Tracking, J. 

Oper. Soc. Japan, 39: 295-306 
[2] Quesada I, Grossmann I E 1996 Alternative bounding approximations for the global optimization of various 

engineering design problems. In I.E. Grossmann, (ed.), Global Optimization in Engineering Design, Nonconvex 
Optimization and Its Applications, Kluwer Academic Publishers, Norwell, MA, 9 pp.309-331 

[3] Maranas C D, Androulakis I P, Floudas C A, Berger A J and  Mulvey J M 1997 Solving long-term financial planning 
problems via global optimization, J. Economic Dynamics & Control, 21: 1405-1425 

[4] Henderson J M, Quandt R E 1971 Microeconomic Theorey. 2nd edition, McGraw-Hill, New York 
[5] Mulvey J M, Vanderbei R J, and Zenios S A 1995 Robust optimization of large-scale systems, Oper. Res., 43: 264-281 
[6] Matsui T 1996 NP-Hardness of Linear Multiplicative Programming and Related Problems, J.Global Optim., 9: 113-119 



BTAIJ, 10(24) 2014  Jingben Yin and Yongming Sun   14815 

[7] Konno H, Kuno T 1992 Linear Multiplicative Programming, Math. Program., 56: 51-64 
[8] Swarup H 1966 Programming with Indefinite Quadratic Function with Linear Constraints, Cahier du Coutre d'Etudes 

de Recherche Operationelle, 8: 223-234 
[9] Li H M, Zhang K C 2006 A decomposition algorithm for solving large-scale quadratic programming problems, Appl. 

Math. Comput., 173(1): 394-403 
[10] Wu H, Zhang K 2008 A new accelerating method for global non-convex quadratic optimization with non-convex 

quadratic constraints, Appl. Math. Comput., 197(2): 810-818 
[11] Liu S T, Wang R T 2007 A numerical solution method to interval quadratic programming, Appl. Math. Comput., 

189(2): 1274-1281 
[12] Shen P, Gu M 2008a A duality-bounds algorithm for non-convex quadratic programs with additional multiplicative 

constraints, Appl. Math. Comput., 198(1): 1-11 
[13] Shen P, Duan Y, Ma Y 2008b A robust solution approach for nonconvex quadratic programs with additional 

multiplicative constraints, Appl. Math. Comput., 201(1-2): 514-526 
[14] Konno H, Fukaishi K 2000 A Branch and Bound Algorithm for Solving Low Rank Linear Multiplicative and Fractional 

Programming Problems, J. Global Optim., 18: 283-299 
[15] Ryoo H S, Sahinidis N V 2003 Global Optimization of Multiplicative Programs, J. Global Optim., 26: 387-418 
[16] Xue C, Jiao H, et al. 2008 An approximate algorithm for solving generalized linear multiplicative programming, J. 

Henan Normal University, 36 (5): 13-15 
[17] Tuy H, Nghia N D 2003 Reverse Polyblock Approximation for Generalized Multiplicative/Fractional Programming, VN 

J. Math., 31: 391-402 
[18] Schaible S, Sodini C 1995 Finite algorithm for generalized linear multiplicative programming, J. Optim. Theory Appl., 

87(2): 441-455 
[19] Gao Y, Xu C, Yang Y 2006 An outcome-space finite algorithm for solving linear multiplica- tive programming, Appl. 

Math. Comput., 179(2): 494-505 
[20] Oliveira R M, Ferreira P A V 2010 An Outcome Space Approach for Generalized Convex Multiplicative Programs, J. 

Global Optim., 47: 107-118 
[21] Ashtiani A M, Ferreira P A V 2010 Global Maximization of a Generalized Concave Multiplicative Problem in the 

Outcome Space, Anais do CNMAC, 3: 377-383 
[22] Benson H P, Boger G M 2000 Outcome-space cutting-plane algorithm for linear multiplicative programming, J. Optim. 

Theory Appl., 104(2): 301-322 
[23] Liu X J,  Umegaki T, and Yamamoto Y 1999 Heuristic methods for linear multiplicative programming, J. Global 

Optim., 4(15): 433-447 
[24] Phuong N T H, Tuy H 2003 A unified monotonic approach to generalized linear fractional programming, J. Global 

Optim., 26: 229-259 
[25] Chen Y, Jiao H 2009 A nonisolated optimal solution of general linear multiplicative programming problems, Comput. 

Oper. Res., 36: 2573-2579 
[26] Wang C F, Li S Y, Shen P 2009 Global minimization of a generalized linear multiplicative programming, Appl. Math. 

Model., 36(6): 2446-2451 
[27] Kuno T, Konno H 1991 A Parametric Successive Underestimation Method for Convex Multiplicative Programming 

Problems, J. Global Optim., 1, pp. 267-286 
[28] Shen P, Jiao H 2006 Linearization method for a class of multiplicative programming with exponent, Appl. Math. 

Comput., 183(1): 328-336 
[29] Wang C F, Liu S Y 2011 A new linearization method for generalized linear multiplicative programming, Comput. 

Oper. Res., 38: 1008-1013 
[30] Jiao H, Guo Y R, Shen P 2006 Global optimization of generalized linear fractional programming with nonlinear 

constraints, Appl. Math. Comput., 183(2): 717-728 
[31] Jiao H 2009 A branch and bound algorithm for globally solving a class of nonconvex programming problems, 

Nonlinear Anal.-Theor., 70: 1113-1123 
[32] Shen P, Bai X, Li W 2009 A new accelerating method for globally solving a class of nonconvex programming 

problems, Nonlinear Anal.-Theor., 71(7-8): 2866-2876 
[33] Benson H P 2008 Global Maximization of a Generalized Concave Multiplicative Function, J. Optim. Theory Appl., 137: 

105-120 
[34] Konno H, Kuno T, and Yajima Y 1994b Global Minimization of a Generalized Convex Multiplicative Function, J. 

Global Optim., 4: 47-62 
[35] Jaumard B, Meyer C, Tuy H 1997 Generalized Convex Multiplicative Programming via Quasiconcave Minimization, J. 

Global Optim., 10: 229-256 
[36] Burer S, Vandenbussche D 2008 A finite branch-and-bound algorithm for non-convex quadratic programming via 

semidefinite relaxations. Math. Program., 113: 259-282 
[37] Chai H, Chen W 2013 Uncertainty Analysis by Monte Carlo Simulation in a Life Cycle Assessment of Water-Saving 

Project in Green Buildings. Inf. Technol. J., 12(13): 2593-2598 
 


