An improved response time-constrained optimization model and solving algorithm for supply chain network design considering transport mode impacts

Hu Hui
Economics and Management School, East China Jiaotong University, No.808 Shuanggang Road, Nanchang, (CHINA)
E-mail: hh24895@163.com

ABSTRACT

Supply chain network design has a great and long impact on both the structure and value of the supply chain network. More and more firms are willing to optimally design their supply chain network so as to reduce their operation cost and improve their competence. In this paper, a referenced mixed integer non-linear programming optimization model considering market response time is solved using CPLEX software instead of Lingo11 software and it seems that an optimal solution can be got readily. Based on this model, an improved mixed integer nonlinear programming (MINLP) model considering transport mode impacts which will affect response time is developed. The model’s objective is to maximize the total profit and decision variables include transportation amounts between facilities, transport mode selection etc. Hereafter, a hybrid intelligent optimization method which takes full advantage of CPLEX software and genetic algorithm is designed to solve the model. Finally, an illustrative supply chain network model is solved using the hybrid algorithm put forward. The results demonstrate the model’s effectiveness and the algorithm’s feasibility compared to the original model and other algorithms.

KEYWORDS

Response time-constrained; Transport mode; Mixed integer nonlinear programming; Hybrid intelligent algorithm; Supply chain network.
INTRODUCTION

In today’s globally competitive trade world, merger and acquisition among corporations are emerging in an endless stream. As a result, supply chain network including these corporations is becoming more complicated, and sets an even higher demand on its design and configuration. Generally speaking, a supply chain network is a set of organizations that are involved, through upstream and downstream linkages, in the different processes and activities that produce value in the form of products and services in the hands of the ultimate customer\[^1\]. It will be very difficult for corporations’ long-term survival without highly optimized and strategic and tactical supply chain model. Savings in the 5–10% range, which can be achieved by using strategic and tactical supply chain network models, will dramatically affect the profitability of the corporation\[^2\].

The supply chain network design problem can be defined as follows: given a set of potential suppliers, potential manufacturing facilities, and distribution centers with multiple possible configurations, and customers with deterministic demands, determine the configuration of the production–distribution system and the transfer prices between various subsidiaries of the corporation such that seasonal customer demands and service requirements are met and the profit of the corporation is maximized\[^3\].

There are many studies on the application of mathematical programming models and algorithms in the field of supply network design (Dhaenens-Flipo, 2000; Amiri, 2006; NgaThanh et al., 2008; Longinidis & Georgiadis, 2011; Mahdi Bashiri et al., 2013)\[^4-8\]. In general, these optimization models mentioned above are formulated as mixed integer programs and solved by commercial software package such as Cplex, LINGO etc or by decomposition techniques and heuristic methods. However, the impact of different transportation modes on supply chain network design and configuration has not been studied deeply (E Olivares-Benitez et al., 2010). Not only does cost-time need a tradeoff produced by transportation choices, but some environmental aspects which is sustainable supply chain network’s focus should be concerned since transport sector is the significant source of CO2 emissions (Wilhelm et al., 2005; Cordeau, J.-F. 2006; Lu et.al, 2007; Anna Nagurney, 2010; Sadjadi, H., 2011; Yu-Chung Tsao, 2012; Xiaopeng Li, 2013)\[^9-15\].

In this paper, taking into transport mode consideration, we try to develop an improved optimization model and its solving algorithm for supply chain network design of Cao’s model which is a multi-echelon model for production-distribution networks\[^16\]. The rest of paper is organized as follows. In section 2, the original response time-constrained MINLP model is introduced and solved using Cplex in Excel, then we present an improved MINLP model considering transport mode which will have impacts on response time and develop a hybrid intelligent optimization method based on Cplex software and genetic algorithm to solve the model. To illustrate application of the improved model, a hypothetical numerical example is cited and compared for the model’s effectiveness and algorithm’s feasibility in section 3. Finally conclusions are summarized and further researches are drawn in section 4.

RESPONSE TIME-CONSTRAINED OPTIMIZATION MODEL AND ALGORITHM

Original Response Time-constrained MINLP Model

A mixed integer nonlinear programming model considering market response time constraint is proposed in paper\[^16\], but the model optimal solution of the case using Lingo11 software is not really got. Although the model is nonlinear, it can be transformed into MIP model so we can use Cplex to solve the case. And the model optimal solution is superior to the solution using Lingo11. It can be compared as TABLE 1. depicts.
An Improved MINLP Model

Considering transport mode such as truck, railway, airline etc. affecting market response time, an improved MIP model based on the existed model in the model mentioned above is proposed.

Assumptions

- The various assumptions involved in this paper are described as below.
- Products only can be transferred from each supplier to all plants, from each plant to all distributors and from each distributor to all customer zones.
- Each supplier has a restriction on the available raw materials.
- Customer demand is deterministic and is necessary to satisfy all customer demands.
- Different customer zones’ price is predictable, and the function concerning response time, sales income, total cost can be fitted according to data analysis.
- Unit cost of different transport mode affecting response time can be got.

Model notation and formulation

Notation: TABLE 2 shows the definition of sets, parameters and variables which are necessary to define the model for the problem under consideration.

Formulation: The mathematical formulation is as follow:

\[
\begin{align*}
\text{Max} & \quad V = \sum_{j=1}^{J} F(T_j) P_j \sum_{i} \sum_{e} z^i_{e,j} - \\
& \quad \left[\sum_{x} F_x u_x + \sum_{e} H_v v_e \\
& \quad + \sum_{l} \sum_{n} \sum_{i} C^1_{l, n} x^i + \sum_{n} \sum_{e} C^1_{n, e} y^i_{1,n} \\
& \quad + \sum_{e} \sum_{j} \sum_{l} C^1_{e,j} z^i + C_{\text{total}} G(T_1, T_2, \ldots, T_J) \right]
\end{align*}
\]

(1)
Objective function (1) is to maximize total profit computed by subtracting total cost from total revenue. Total income is simply the total selling income. Total cost includes operation cost, transportation cost.

\[\sum \sum_{i} x_{i,n} \leq S_i, \forall i \in L \]
(2)

\[\sum \sum_{i} y_{n,e} \leq K_n u_n, \forall n \in N \]
(3)

\[\sum \sum_{i} z_{e,j} \leq W_e v_e, \forall e \in DC \]
(4)

Subjected to: \[\sum \sum_{i} x_{i,n} \geq D_j, \forall j \in CM \]
(5)

\[\sum \sum_{i} x_{i,n} = \sum \sum_{i} y_{n,e}, \forall n \in N \]
(6)

\[\sum \sum_{i} y_{n,e} = \sum \sum_{i} z_{e,j}, \forall e \in DC \]
(7)

\[T_{j_1} \leq T_j \leq T_{j_2}, \forall j \in CM \]
(8)

\[u_n \in \{0,1\}, n \in N \]
(9)

\[v_e \in \{0,1\}, e \in DC \]
(10)

\[x_{i,n} \geq 0, y_{n,e} \geq 0, z_{e,j} \geq 0 \]
(11)

<table>
<thead>
<tr>
<th>TABLE 2 : Set of the parameters and variables</th>
</tr>
</thead>
</table>

Sets

- **L** set of suppliers
- **N** set of available plants
- **DC** set of available distribution centers
- **CM** set of customers’ market
- **TM** set of transport mode

Parameters

- **S_i** supply capacity of Supplier **i**
- **K_n** production capacity of Plant **n**
- **F_n** build and operation cost of Plant **n**
- **W_e** process capacity of Distribution Center **e**
- **H_e** build and operation cost of Distribution Center **e**
- **D_j** demand quantity in Customer Market **j**
- **P_j** product price in Customer Market **j**
- **[T_{j_1}, T_{j_2}]** response time interval in market zone **j**
- **C_{i,n}^i** unit transport cost from Supplier **i** to Plant **n** via transport mode **i**
- **C_{n,e}^i** unit transport cost from Plant **n** to Distribution Center **e** via transport mode **i**
- **C_{e,j}^i** unit transport cost from Distribution Center **e** to Customer Market **j** via transport mode **i**
- **F(T_j)** function between response time **T_j** in customer market **j** and sales income
- **G(T_1, T_2, \cdots, T_j)** function between all response time **T_j** and total cost of supply network

Variables

- **x_{i,n}^i** transportation amounts from Supplier **i** to Plant **n** via transport mode **i**
An improved response time-constrained optimization model and solving algorithm

\[y_{n,e}^i \] transport amounts from Plant \(n \) to Distribution Center \(e \) via transport mode \(i \)

\[z_{e,j}^i \] transportation amounts from Distribution Center \(e \) to Customer Market \(j \) via transport mode \(i \)

\[u_n \] decided whether building Plant \(n \) or not

\[v_e \] decided whether building Distribution Center \(e \) or not

\[T_j \] response time in customer market \(j \)

Constraint (2) prevents a supplier to exceed the maximal capacity.
Constraint (3), (4) ensure that plant and distribution center can provide enough goods.
Constraint (5) states that all products transferred to customers should be more than their demands in any market zone.
Constraint (6), (7) is related to flow conservation at plants and distribution center.
Constraint (8), (9), (10), (11) restrict the variables value from taking the interval, binary, and non-negative value etc.

A hybrid intelligent optimization algorithm for solving MINLP model

Obviously, the model is an MINLP problem. As a very complex and challenging one, MINLP has been proved to be NP-hard problem. Nevertheless, it can be solved with the computation technology development. The solving algorithms for MINLP can be categorized into three types: B&B, GBD and OA, while they need a long time as the size of MINLP problem is enlarged\(^{[17]}\).

For the model described above, we try to design a hybrid algorithm taking full advantage of CPLEX software and intelligent optimization methods such as GA (genetic algorithm) since we can transfer the model into a. The main procedures of the algorithm are as below:

1. Input the maximum iterations and other parameters in GA.
2. Initialize the binary variables in the model which are coded using 0-1 string in GA.
3. Given the binary variables’ value, call CPLEX solver to solve the model and get the objective function value, the solution of the model.
4. Execute selection, reproduction, crossover and mutation in GA for the solutions to get the new solutions.
5. Decide whether the convergence criterion can be met. If met, global solution is exported, the algorithm terminates. Else, return (4) to continue.

ILLUSTRATIVE EXAMPLE

Parameters especially for transport modes

In order to illustrate the model application, an illustrative example and its data in the paper\(^{[16]}\) is referenced for the improved model. What’s more, the transportation unit cost is provided as follows: S, F, DC, CM represents supplier, Factory, distribution center, customer market respectively. Tm1, Tm2 are different transport modes.

<p>| TABLE 3 : Transportation unit cost between facilities |
|---------------------|-----|-----|---------------------|-----|-----|</p>
<table>
<thead>
<tr>
<th>Facility</th>
<th>Tm1</th>
<th>Tm2</th>
<th>Facility</th>
<th>Tm1</th>
<th>Tm2</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1->F1</td>
<td>200</td>
<td>300</td>
<td>F2->DC1</td>
<td>400</td>
<td>300</td>
</tr>
<tr>
<td>S1->F2</td>
<td>400</td>
<td>500</td>
<td>F2->DC2</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>S1->F3</td>
<td>300</td>
<td>600</td>
<td>F2->DC3</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>S2->F1</td>
<td>200</td>
<td>100</td>
<td>F3->DC1</td>
<td>600</td>
<td>400</td>
</tr>
</tbody>
</table>
Optimization results comparison

For comparison with the model in the paper [9], response time T_1, T_2 is set 1, 4 respectively. Using the hybrid algorithm, the optimal results are demonstrated in TABLE 4 which is same as the solutions in GAMS software.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit</td>
<td>30590000</td>
</tr>
<tr>
<td>Supplier1->Factory2(TM1)</td>
<td>350</td>
</tr>
<tr>
<td>Supplier1->Factory3(TM1)</td>
<td>100</td>
</tr>
<tr>
<td>Supplier2->Factory2(TM1)</td>
<td>150</td>
</tr>
<tr>
<td>Supplier3->Factory3(TM1)</td>
<td>300</td>
</tr>
<tr>
<td>Factory2->DC2(TM1)</td>
<td>500</td>
</tr>
<tr>
<td>Factory3->DC1(TM2)</td>
<td>0</td>
</tr>
<tr>
<td>DC1->Market2(TM1)</td>
<td>400</td>
</tr>
<tr>
<td>DC2->Market1(TM1)</td>
<td>450</td>
</tr>
<tr>
<td>DC2->Market2(TM2)</td>
<td>50</td>
</tr>
</tbody>
</table>

As TABLE 4 depicts, the profit is increased to 30590000 which is more than the previous model and goods transferred from plant 3 to distribution center 1 and from distribution center 2 to market 2 is via transport mode 2. This reveals that this improved model can get a better result by considering transport mode impacts. So, the model’s effectiveness and the hybrid algorithm’s feasibility are confirmed by this illustrative example.

CONCLUSIONS

Supply chain network design is one of the most important strategic decisions in the current competitive business environment. This paper firstly introduces a mixed integer nonlinear programming model considering response time and finds it can easily get an optimal solution using Cplex in Excel instead of Lingo software. Based on this original model, an improved model is proposed considering transport mode affecting response time and a hybrid algorithm is put forward. Finally, a numerical example has been solved to illustrate the proposed model’s effectiveness and the solving algorithm’s feasibility.

The improved model in this paper can be extended by considering some environmental aspects such as CO2 emissions to be a multi-objective optimization model. Another direction is to consider response time to customer requirements which need a tradeoff for supply chain network. Also it is suggested to increase the computation efficiency for large scale problems, some novel heuristic methods for this specific class of problems can be taken into account as the further step of this research.
ACKNOWLEDGEMENT

The paper is supported by Soft Science Research Base on new industrialization and urbanization of Jiangxi Province and PhD Start-up Fund of East China Jiaotong University (13JG04, 09142001).

REFERENCES

