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ABSTRACT

When the work produced by a reversible Carnot engine is subsequently
degraded through a frictional mechanism into an equivalent amount of
heat at the temperature of the cold reservoir, the universe of this reversible
engine becomes identical to that of the commonly studied direct, irrevers-
ible transfer of heat from a hot to a cold body. The identity qualifier rests
on the fact that in these two processes the changes experienced by the
only two bodies affected -the heat reservoirs- are identical; situation that
leads to the same entropy change for one process and the other. These
coincidences notwithstanding, an essential difference separating these
two processes is here identified: the fact that in the work-producing/work-
degrading combination, the entropy change is determined not by the whole
of the heat flowing from the hot to the cold body, as it happens in the
direct transfer of heat, but by a fraction of it; with the remaining of the heat
flowing irreversibly at constant entropy. The identification of this con-
stant entropy irreversible process leads, in turn, to the unveiling of a
contradiction between second law thermodynamics� reversibility crite-
rion, and it�s supposedly empirical counterpart embodied by the principle:
Heat cannot, of itself, pass from a colder to a hotter body.
 2011 Trade Science Inc. - INDIA

INTRODUCTION

According to Planck[1]

The significance of the second law of thermody-
namics depends on the fact that it supplies a necessary
and far-reaching criterion as to whether a definite pro-
cess which occurs in nature is reversible or
irreversible�A process which can in no way be com-
pletely reversed is termed irreversible, all other pro-
cesses reversible. That a process may be irreversible, it
is not sufficient that it cannot be directly reversed�The

full requirement is, that it be impossible, even with the
assistance of all agents in nature, to restore everywhere
the exact initial state when the process has once taken
place�The second law of thermodynamics states that
there exists in nature for each system of bodies a quan-
tity, which by all changes of the system either remains
constant (in reversible processes) or increases in value
(in irreversible processes). This quantity is called, fol-
lowing Clausius, the entropy�

The thermodynamic analysis herein presented leads,
however, to a contradiction with the previous statement.
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The contradiction takes form in an irreversible heat trans-
fer taking place at constant entropy. This paper limits
itself to the presentation of the thermodynamic analysis
leading to such a result.

CARNOT�S REVERSIBLE ENGINE, THE

TRANSFORMATIONS PRODUCED BY IT,
AND THEIR ENTROPY CHANGES

The essential constitutive elements of a reversible
Carnot engine, such as that represented in Figure 1(a)
are the following:
1 A hot reservoir of temperature T

h

2 A cold reservoir of temperature T
c
, where T

h 
 T

c

3 A working substance, which for the purpose of this
discussion will be taken to be an ideal gas, and

4 A mechanical reservoir acting as depository of the
work produced in the operation.
One cycle in the operation of this engine may be

described in terms of the following concatenation of
processes:

AB: An isothermal and reversible expansion at the
temperature of the hot reservoir T

h
. Here an amount

of heat Q
h
 absorbed by the ideal gas from the hot

reservoir, is transformed into an equivalent amount of
work W

h
.

BC: An adiabatic and reversible expansion. Due to the
adiabatic nature of the process, here the ideal gas man-
ages to produce an amount of work W� out of its own
internal energy and in doing so its temperature drops
from T

h
 to T

c
.

CD: An isothermal and reversible compression at the
temperature of the cold reservoir T

c
. Here a portion W

c

of the work previously produced is utilized in order to
carry on this compression. The spent work is absorbed
as an equivalent amount of heat Q

c
 by the cold reser-

voir (Q
c
  Q

h
).

DA: An adiabatic and reversible compression that re-
turns the variable body to its initial condition, closing
thus one cycle in the operation of this engine. This pro-
cess demands the expenditure of an amount of work
W� identical to that produced by process BC. Due to
the adiabatic nature of the process, here the work ex-
pended ends up increasing the internal energy of the
ideal gas, thus raising its temperature from T

c
 to T

h
.

The fact that at the completion of one cycle the
working substance returns to its original condition, re-
duces the changes produced by the engine to those ex-
perienced by the heat and mechanical reservoirs, con-
sisting in the transfer of an amount of heat Q

c
 from the

hot to the cold reservoir, and the transformation of an
amount of heat Q, Q = Q

h 
� Q

c
, into an equivalent

amount of work W, W = W
h
 � W

c
. These two changes

or transformations, depicted in Figure 1(b), will be re-
spectively represented by the following self-evident
notation[Q

c
(T

h
)  Q

c
(T

c
)]

rev
, and [Q(T

h
)  W]

rev
. As

components of a reversible process, these transforma-
tions are reversible themselves. This fact has been indi-
cated by the sub index �rev�.

At the light of second law thermodynamics� con-
stant-entropy reversibility criterion, as expressed in
Planck�s previous quote, the entropy change for the
universe of the reversible Carnot engine under consid-
eration can be written as
S[Q

c
 (T

h
)  Q

c
 (T

c
)]

rev
 + S[Q(T

h
)  W]

rev
 = 0 (1)

The identification of the individual values for the en-
tropy changes shown in eq. 1 starts by recognizing that,
as previously described in reference to Figure 1, the
heat taken in by the ideal gas from the hot reservoir
along AB is larger than that it gives out to the cold res-
ervoir along CD. This fact allows us to realize that there

Figure 1 : Two representations of a reversible heat engine.
The cyclical evolution defined in (a) by the concatenation of
processes AB-BC-CD-DA produces, out of the amount of
heat Q

h
 released by the hot reservoir, the two changes or

transformations depicted in (b), these being the transfer of
an amount of heat Q

c
 to the cold reservoir, and the transfor-

mation of the amount of heat Q into an equivalent amount of
work W. Point E is used below in the argument directed to
the identification and evaluation of the entropy changes of
these two transformations
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exists some point E on isotherm AB that allows the ideal
gas in its transit along EB, to take from the hot reservoir
an amount of heat Q

c
 identical to that given out to the

cold reservoir along CD. The approximate location of
point E is shown in Figure 1. Assuming that the opera-
tion of the cycle is to start at point E, consideration will
be given to the effect of the concatenation of processes
EB-BC-CD-DA. Actually, on reason of the fact that
the effect of the adiabatic and reversible process BC is
precisely cancelled by the adiabatic and reversible pro-
cess DA, the effect of the said concatenation reduces
to that produced by the combination of processes EB
and CD. Along EB the hot reservoir transfers to the
ideal gas an amount of heat Q

c
. The ideal gas, on its

part, transforms this heat into an equivalent amount of
work W

c
. Along CD, on the other hand, an amount of

work W
c
 is transformed into an equivalent amount of

heat Q
c
. This heat ends up being absorbed by the cold

reservoir. The fact that an identical amount of work as
that produced along EB is consumed along CD, allows
us to realize that what this concatenation manages to
effect is the transfer of Q

c
 from the hot to the cold res-

ervoir. Recognition of the facts that processes BC and
DA are by definition isentropic, and that the entropy
change for isothermal and reversible expansion EB as
well as isothermal and reversible compression CD is
zero on reason of the fact that in each of them the en-
tropy changes for the reservoir and the ideal gas are of
the same magnitude but opposite sign, leads to
S[Q

c
 (T

h
)  Q

c
 (T

c
)]

rev
 = 0 (2)

Let us now recognize that the process AE needed to
bring the cycle to its conclusion is an isothermal and
reversible expansion at the temperature of the hot res-
ervoir. Through it the ideal gas absorbs an amount of
heat Q from the hot reservoir and transforms it into an
equivalent amount of work W. Since no other effect
but this can be associated to this expansion, it follows
that it is AE the one responsible for the net work output
of the cycle, or in other words, for bringing forward the
transformation of Q into W. For the reason previously
given, the entropy change for isothermal and reversible
expansion AE is zero. Therefore
S[Q(T

h
)  W]

rev
 = 0 (3)

The entropy changes of equations 2 and 3 are found
not only in compliance with equation 1, actually any

pair of equal magnitude but opposite sign entropy
changes could have also complied with it; what is most
important is that they also comply individually with the
constant-entropy reversibility criterion. The necessity
of this individual compliance comes from the fact that
each of those transformations is a universe in itself (or a
sub-universe of the heat engine), and as such their re-
spective entropy change calculations involved each and
every body taking any part on them.

AN IRREVERSIBLE HEAT TRANSFER

The essential characteristic of the direct, irrevers-
ible transfer of a given amount of heat from a hot to a
cold reservoir is that through it no work is at all pro-
duced. The fact that the transfer back of this heat from
the cold to the hot reservoir demands the expenditure
of work, combined with the fact that none was gener-
ated in the original process, leads to the realization that
this reversion can only be accomplished with the con-
course of a work-supplying body. This impossibility of
recuperating the original universe without changes re-
maining in other bodies is what qualifies it as irrevers-
ible. The fact made evident by Figure 2, that such a
process involves no other bodies but the heat reser-
voirs means that once the transfer has taken place the
only changes left in the universe are those experienced
by these bodies. Under the assumption that the initial
condition of the hot and cold reservoirs involved in this

Figure 2 : The figure depicts the irreversible transfer of an
amount of heat Q

h
 from a hot reservoir of temperature T

h
 to a

cold reservoir of temperature T
c
. The fact that no work is

generated in this process makes it irreversible, as the trans-
fer back of Q

h
 from the cold reservoir can only be achieved by

leaving a permanent change on that body supplying the work
demanded by such a transfer.
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process are respectively identical to those used in the
cyclical process of Figure 1, we can specify the changes
experienced by these bodies in the process represented
in Figure 2 as follows: The final condition of the hot
reservoir equals its initial condition minus an amount of
heat Q

h
; The final condition of the cold reservoir equals

its initial condition plus an amount of heat Q
h
.

The entropy change for this irreversible process can
be calculated through the expedient of finding a revers-
ible path connecting the same initial and final states. This
procedure finds explanation in the fact that the entropy
function is defined in terms of reversible heat. With this
alternate reversible path in place the reversible heat can
be quantified for the specified change and the entropy
change evaluated. Since the entropy is a state function,
as long as the original irreversible process and its re-
versible counterpart link the same initial and final states,
the entropy change will be one and the same.

For the irreversible heat transfer depicted in Figure
2, this procedure produces the following result[2]

S[Q
h
(T

h
)  Q

h
(T

c
)]

irr
 = �(Q

h
 / T

h
) + (Q

h
 / T

c
) (4)

The re-expression of the previous equation in the fol-
lowing form
S[Q

h
(T

h
)  Q

h
(T

c
)]

irr
 = Q

h
(T

h
 � T

c
)/(T

h
T

c
) (5)

makes clear that in this process each and every unit of
heat contained in Q

h
 makes a contribution to the total

entropy change in the amount of (T
h
 � T

c
)/(T

h
T

c
). Let us

now recognize that in the previous equation the term
(T

h
 � T

c
)/T

h
 can be identified as the maximum efficiency

possible (
max

) for any heat engine working between
those two reservoirs. On this perspective the product
Q

h
((T

h
 � T

c
)/T

h
) represents the maximum possible

amount of work (W) this engine could have outputted
had Q

h
 been fed to it. The fact that Q

h
 was not fed to

this engine, but instead it was transferred in a direct,
irreversible fashion to the cold reservoir, allows us to
realize that in this situation the said product quantifies
the wasted work-producing potential i.e. the �lost work�
that Q

h
 carries with it to the cold reservoir. This last

consideration is made explicit in the following re-ex-
pression of equation 5
S[Q

h
(T

h
)  Q

h
(T

c
)]

irr
 = Q

h
 

max
/T

c
 = W/T

c
(6)

This last equation sheds light on the fact that the en-
tropy change produced by the irreversible transit of Q

h

units of heat from the hot to the cold reservoir, is of

equal magnitude to that associated to the absorption of
an amount of heat Q

h


max
 by the cold reservoir.

AN EQUIVALENT IRREVERSIBLE
HEAT TRANSFER

The workless label previously mentioned as the es-
sential characteristic of an irreversible heat transfer
opens up the possibility of producing a direct irrevers-
ible transfer of heat from a hot to a cold reservoir via
the combination of a first step represented by one cycle
in the operation of the reversible cyclical process rep-
resented in Figure 1, with a second step represented
by the frictional degradation of the work previously pro-
duced by the cycle.

As shown in Figure 3(a), and as previously dis-
cussed, one cycle in the operation of this reversible en-
gine brings forward the transfer of the amount of heat
Q

c
 from the hot to the cold reservoir, as well as the

transformation into work of the amount of heat Q of
temperature T

h
. Both of these reversible changes or

transformations take place, as shown by equations 2
and 3, with zero entropy changes. We will take now
the work generated by the engine and as shown in 3(b),
degrade it via a frictional process, into an equivalent
amount of heat (Q) that will end up in the cold reser-
voir. Once this work-degrading process is finished we
find, as can be seen from 3(c), that all the changes
brought about by this concatenation reside solely in the
heat reservoirs. No change remains in the variable body
of process 3(a) as at the end of one cycle we find it in
its precise initial condition. No change remains in the
work reservoir as the work originally deposited there
by process 3(a) has been retrieved and transformed
into heat by process 3(b). Based on these consider-
ations we can specify the changes experienced by these
bodies as follows: The final condition of the hot reser-
voir equals its initial condition minus an amount of heat
Q

h
; the final condition of the cold reservoir equals its

initial condition plus an amount of heat Q
h
.

The fact that the initial and final conditions of the res-
ervoirs for the processes depicted in Figures 2 and 3(c)
are the same, allows us to conclude that these processes
are equivalent and if so, that the same entropy change
applies for both of them. That this is so can be shown by
comparing the result for the process of Figure 2 given by
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The irreversible label attached to both of the transfor-
mations appearing in 3(c) comes from the fact the re-
version of either, or both, Q and Q

c
, back to the hot

reservoir, demands the expenditure of an amount of
work that we don�t have. If performed, these rever-
sions will leave a permanent change in that body called
to supply the missing work. With these precisions aside,
we can now recognize that equation 9 is a statement of
the fact that the entropy change for process 3(c) finds
sole quantification in terms of the entropy change of
transformation [Q(T

h
)  Q(T

c
)]

irr
. But if this so, then

the other transformation there involved [Q
c
(T

h
) 

Q
c
(T

c
)]

irr
, takes place at constant entropy, i.e.

S[Q
c
(T

h
)  Q

c
(T

h
)]

irr
 = 0 (10)

The realization that the process to which equation 10
makes reference is reversible attending to its entropy
change, and irreversible attending to the impossibility
of transferring Q

c
 back to the hot reservoir without

changes in other bodies remaining, attest to the lack of
equivalence between the constant-entropy criterion of
reversibility and that embodied by the possibility of re-
storing the initial condition of the universe. The only
possibility open for the constant-entropy criterion to
remain valid in regard to what equation 10 expresses
i.e. the only possibility for us to trade �irr� for �rev� in
equation 10 demands of Q

c
 the ability to flow of itself,

unassisted, from the cold to the hot reservoir. In other
words the validity of the constant-entropy reversibility
criterion demands the non-validity of the second law
understood as: Heat cannot, of itself, pass from a colder
to a hotter body.

The fact that the unassisted transfer of Q
c
 from the

cold to the hot reservoir is denied by experience con-
firms the irreversibility of [Q

c
(T

h
)  Q

c
(T

c
)]

irr
, and ne-

gates the association between reversibility and a zero
entropy change.

DISCUSSION

Beyond the equivalence of processes 2 and 3(c)
made manifest by the identity of their entropy changes,
an essential difference remains: The fact that while in
process 2 the entropy change is made up of the en-
tropy contributions coming from each and every unit of
heat irreversibly flowing from the hot to the cold reser-

Figure 3 : Out of the amount of heat Q
h
 released by the hot

reservoir of temperature T
h
, the reversible engine shown in

(a) manages to transfer the smaller amount Q
c
 to the cold

reservoir of temperature T
c
, and to transform the difference

Q = Q
h
 � Q

c
 into the equivalent amount of work W. This

amount of work will be now, as shown in (b), frictionally
degraded into the equivalent amount of heat Q, and as such it
will end up in the cold reservoir. The final result of the
concatenation of processes (a) and (b) is shown in (c). The
fact that at the end of one cycle the ideal gas acting as vari-
able body in process (a) returns to its initial condition, com-
bined with the fact that the work generated at (a) is dissi-
pated as heat in (b), allows us to realize that in (c) the only
bodies changing are the heat reservoirs. The net effect of
process (c) is identical to that of the irreversible transfer
shown in Figure 2.

equation 6, with that obtained for process 3(c) through
the addition of the entropy changes of processes 3(a)
and 3(b), as follows

     
       

  

cc

irrc

revhrevcchc

T
W

T
W

00

TQWS

WTQSTQTQS

)b(3processS)a(3processS)c(3processS









(7)

The entropy change assigned in equation 7 to transfor-
mation [W  Q(T

c
)]

irr
 comes from the thermodynamic

result that associates an entropy increase of magnitude
W/T to the irreversible degradation of an amount of
work W into heat at temperature T[3,4]. It should also
be noted that in Figure 3(c) the combination of trans-
formations [Q(T

h
)  W]

rev
 and [W  Q(T

c
)]

irr
 has

been substituted by the expression [Q(T
h
)  Q(T

c
)]

irr
.

According to this, the entropy change for this last trans-
formation can be written as follows
S[Q(T

h
)  Q(T

c
)]

irr
 = S[Q(T

h
)  W]

rev

+ S[W  Q(T
c
)]

irr
 = 0 + W/T

c
 = W/T

c
(8)

Therefore
S[process3(c)] = S[Q(T

h
)  Q(T

c
)]

irr
 = W/T

c
(9)
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voir; in process 3(c) the entropy change can be traced
to the irreversible transfer of the amount of heat Q
through the combination of a work-producing/work-
degrading process, with the irreversible transfer of the
remaining amount of heat Q

c
, taking place at constant

entropy. This constant entropy irreversible process not
only contradicts the supposed equivalence between the
constant-entropy reversibility criterion and that based
on the possibility of recuperating the original universe, it
also negates the equivalence between the said constant-
entropy reversibility criterion and the principle: Heat
cannot, of itself, pass from a colder to a hotter body.

The previous considerations have brought to light
the essential characteristics of a thermodynamic impasse
demanding a solution, an impasse which, in this author�s

opinion, might very well indicate a subtle yet funda-
mental inconsistency in the edifice of the second law
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