
[Type text] [Type text] [Type text] 

 
 
  

 
 

 
 
 

2014 

 

© Trade Science Inc. 
 

ISSN : 0974 - 7435 Volume 10 Issue 7 

BioTechnology 

An Indian Journal 
FULL PAPER 

BTAIJ, 10(7), 2014 [2245-2255]

A Sequence model based phenotype structure 
discovery algorithm 

 
Yu-Hai Zhao*, Ying Yin 

College of Information Science & Engineering, Northeastern University, Shenyang 
110819, (CHINA) 

E-mail : zhaoyuhai@ise.neu.edu.cn 
 

ABSTRACT 
 
Phenotype structure discovery is one of the most important problem in microarray data 
analysis. The goal is to (1) find groups of samples corresponding to different phenotypes 
(such as disease or normal), and (2) for each group of samples,find the representative 
expression pattern that distinguishes this group from others. Different from the existing 
singleton discriminability based approach and combination discriminability-based 
approach, we present a novel method in this paper. Based on the proposed g*-sequence 
model, an efficient algorithm, namely FINDER, is developed to mine the optimal 
phenotype structure from a given dataset. Further, several effective pruning strategies are 
designed to improve the efficiency. The experiments conducted on both synthetic and real
microarray datasets show that the phenotype structures discovered by FINDER are of both 
statistical and biological significance. Moreover, FINDER is 2~3 orders of magnitude 
faster than the alternatives. 
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INTRODUCTION 
 

Advanced microarray technologies have made large amounts of gene expression profiles 
available. Analyzing microarray data is essential for understanding the gene functions, gene regulation, 
cellular process, and subtypes of cells[1�3]. 

An important task in microarray data analysis is phenotype structure discovery[4]. Given a 
microarray dataset of m samples and n genes, a phenotype structure refers to a group of �blocks� (or 

submatrices), each of which consists of a subset of samples and a subset of genes such that: (1) the 
samples from all the blocks make up a partition of m samples, and the samples in a block correspond to 
a phenotype (such as a disease subtype); and (2) the gene expression pattern within a block can be used 
as the signature to distinguish this group of samples from others[5]. The genes in a signature may suggest 
the potential biomarkers related to the disease. In particular, phenotype structure discovery is an 
unsupervised learning problem. It is more challenging than the problem of biomaker selection with 
known class labels[4,6]. 

Most existing phenotype structure discovery methods fall into two major categories, i.e. 
singleton discriminability based and combination discriminability based[4,6]. The former selects top-
ranked genes according to their individual discriminative power to the target classes[6]. Obviously, this 
over simplifies the complex relationship among genes due to the gene independence assumption. The 
latter aims to find a subset of genes of the high combinatorial discriminative power. However, it just 
take into account the co-occurrence of genes. This often leads to a large number of selected genes, as 
poses crucial challenge for biologists to interpret and validate the results. 

In this paper, we model the discriminative genes from a new perspective by exploiting their 
ordered gene expression values. Compared with the existing models, our model is more robust to noise. 
Figure 1 illustrates our basic motivation by an real example from Prostate cancer gene expression 
dataset[8]. 

 

 
 

Figure 1 : A real example from the Prostate cancer dataset 
 

Figure 1 consists of two subfigures. In the top subfigure, 4 genes are expressed over 25 samples. 
Samples 1~16 are cancerous (labeled as �C�) and samples 17~25 are normal (labeled as �N�). In the 

bottom subfigure, another set of 3 genes are expressed over the same set of samples. The existing 
singleton or combination discriminability-based methods cannot distinguish the two phenotypes. Since 
most genes are of similar average expression values in the two phenotypes, they will not be selected by 
the singleton approach. Moreover, all genes are expressed in both phenotypes. Thus, the combination 
approach based on the co-occurrence of genes will not select them either. Both of the methods ignore the 
hidden interrelation among genes. In the top subfigure, the gene order over the samples of cancerous 
phenotype �C� is always 1234 genegenegenegene  . Such order is disturbed in normal phenotype �N�. In 

the bottom subfigure, the gene order in normal phenotype �N� is 765 genegenegene  , while in cancerous 
phenotype �C� such order does not exist. Based on the ordered expression values, the disease phenotypes 

(the two shadowed "blocks") are well identified. 
In biology community, discriminative sequential patterns involving the ordered gene expression 

values have been shown effective in distinguishing phenotypes[7,9]. Such patterns have an intuitive 
biological interpretation. Complex diseases often involve the cooperation of multiples genes. These 
genes work together as a system to keep the cell in a specific state, e.g., disease or normal. In such a 
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state, some special interrelationship among genes will exhibit. Once such relationship is disrupted, the 
state may change, e.g., from normal to disease.  

In this paper, we propose a novel phenotype structure discovery method by profitably exploiting 
the ordered gene expression values. Our contributions are summarized as follows. 
(1) A g*-sequence model is devised. It introduces the significant chain to ensure the robustness of the 
proposed model, and enables to identify highly discriminative signatures with only a small number of 
genes. 
(2) A novel sequence dissimilarity metric, namely projection divergence, is proposed. By this metric, the 
difference between a pair of blocks (submatrices) can be quantified based on the signatures features of 
the blocks. 
(3) An efficient algorithm, FINDER, is developed to find the optimal phenotype structure. By 
incorporating the cross projection into a progressive exploring framework, candidate phenotype 
structures are searched in a quality-guaranteed way. 

The rest of this paper is organized as follows. In Section 1, we introduce some preliminaries and 
give the problem statement. Section 2 details our solution. Experimental analysis is given in Section 3. 
Finally, section 4 concludes this paper. 
 

THE PRELIMINARY 
 

In this section, we first introduce some basic concepts useful for further discussion, and then 
formalize the problem to be addressed in this paper. 
 
g*-sequence 

A microarray dataset D is an mn matrix, with m samples S={s1, s2,, sm} and n genes G={g1, 
g2,,gn}. A real value dij in D represents the expression value of gene gj on sample si. An example 
microarray dataset of 4 samples and 9 genes is shown in TABLE 1. Microarray data are often noisy. We 
introduce the concept of equivalent dimension group which represents a set of genes with similar 
expression values. 

 
TABLE 1 : An example Microarray dataset 

 
Sample g1 g2 g3 g4 g5 g6 g7 g8 g9 

s1 103 68 76 48 71 101 55 50 83 
s2 35.5 20.1 28.7 17.2 13.2 23.8 13.5 15.8 30 
s3 5.7 6.7 9 5 10.3 10 15.2 5.2 8.7 
s4 32 53 79 43 35 72 105 38 68 

 
Definition 1. Given an expression matrix D of a sample set, S={s1, s2,, sm}, and a gene set, G={g1, 
g2,,gn}, if for a grouping threshold , 0, and some sample siS, there exists a subset, G, of genes 
holding both Eq.(1) and Eq.(2), we say G is an equivalent dimension group, or an EDG for short, of the 
sample si. 
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Eq. (1) limits the maximum difference between any pair of expression values in an EDG. Eq. (2) 

guarantees that a gene is always grouped with its closest neighbor. We call a gene satisfing Eq. (1) but 
not Eq. (2) a breakpoint. 
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Due to the highly noisy, considering close values as ordered is impractical in the context of 
microarray data analysis. An EDG encloses a group of genes with the similar expression values together. 
Thus, the sequences of genes in which any pair of genes are not in the same EDG is robust to noise w.r.t 
the group threshold . Moreover, this shortens the maximum size of the sequences such that the 
computing time is also greatly reduced. 
 For a sample si, a sliding window approach can be used to find all EDGs. First, all genes are 
sorted by their expression values in ascending order. Second, we slide a window from left to right. The 
size of every window is initially determined by Eq. (1), and then refined by Eq. (2). If a breakpoint is 
encountered, the next window starts from the first breakpoint. Otherwise, start from the position 
immediately right to the current left-end of the window. 

 

 
 

Figure 2 : g*-sequences for the samples in TABLE 1, =0.5 
 

 If =0.5, the sequences of EDGs corresponding to every sample in TABLE 1 are shown in 
Figure 2, each of which is called as a g*-sequence. Specially, for a given sample si, the corresponded g*-
sequence is denoted as $i, and the i-th EDG is denoted as EDGi. Given a g*-sequence $i, R(x, y) is a 
binary relation for a pair of genes x and y. R(x, y) is TRUE if there exists an EDG in $i containing both x 
and y. Otherwise, R(x, y) is FALSE. 
Definition 2: Given two g*-sequences $i and $j, if x,y$i, R(x,y) always holds the same value for both 

$i and $j, we say $i is a subsequence of $j, denoted as $i⊑$j. In particular, if x, y$i, R(x, y) is always 

FALSE in $i and $j, we say $i is a significant chain of $j. Further, $i is closed if there is no $i s.t. $j, 

$i⊑$i⊑$j. 

Suppose that $i(g8g2g5)g3g6 and $j(g8g2g5)g3g6. Then, for $1 in Figure 2, $i⊑$1 but $i⊑/ $1. 
Moreover, g8g3g6 is a significant chain of $1. A significant chain ensures that there is a significant 
difference between the expression values of any pair of genes within it. In particular, g8g3g6 is a closed 
significant chain. 
 
Phenotype structure 
Next, we introduce how to quantify the quality of a phenotype structure based on the g*-sequences 
model. 
Definition 3: Suppose that m g*-sequences $i (i[1,m]) are partitioned into k disjoint subsets 
set1,set2,...,setk. A subsequence $ is a signature of subset setl (l[1,k]), iff: (1) $xsetl, $, $x, and (2) 
$ysetl, $⊑/ $y. In particular, if $xsetl, $ is a significant chain of $x, we call $ a p-signature of setl. 
Suppose that the four g*-sequences are partitioned into two disjoint subsets, set1={$1, $2} and 
set2={$3,$4}. According to Definition 3, $=g7(g6g1) is a signature of set1, g7g6 and g7g1 are two p-
signatures of set1. 
Given a p-signature pi and a sample s, the projection of pi on s, denoted as pi|s, refers to the sequence of 
all genes in pi permuted according to their relative orders in $. If a pair of genes in pi has a reverse 
relative order in pi|s, we call it a reverse pair. Given pi and pi|s, for a gene x, if it is at the k-th locus in pi 
and at the j-th locus in pi|s, we call |kj| the distortion of x between pi and pi|s, denoted as distx(pi,s). For 
example, if pi =g3g4g6, and s is s1 in Tab. 1, then pi|s=g4g3g6 and (g3g4) is a reverse pair. 
Definition 4: Given a p-signature pi and a sample s, the projection divergence of pi and pi|s, denoted as 
PD(pi, pi|s), is 
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PD takes into account the interrelationship among genes when computing the difference, as is 
quite different from some commonly used sequence distance metrics (e.g. edit distance ED[10]). 
Continuing the previous example where pi =g3g4g6 and s is s1 in Tab. 1, since there is only one reverse 
pair in pi, i.e. (g3g4), then PD (pi, pi|s) = 1[1+1] = 2. 
Below is a quality measure for a candidate phenotype structure based on PD. 
Definition 5: For a microarray dataset D, let  ={set1,set2,�,setk} be a partition of the m samples and  
={p1,p2,�,pk} be a set of p-signatures, where pi is a p-signature of seti. A phenotype structure in D 
refers to the collection of all submatrices {(seti,pi)}. Its quality function is defined as follows 
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|seti|(or |setj|) denotes the number of samples in seti or setj. 

Let Di={dx,y|sxseti,gypi} be the projected submatrix of seti on pi. B(i,j) evaluates the mutual 
difference between two submatrixes Di and Dj. Larger B(i,j) indicates larger mutual difference between 
Di and Dj. Thus, Q(,) measures the average pairwise difference between submatrices. 

Consider the example in TABLE 1. Suppose that the samples are partitioned into set1={$1,$2} 
and set2={$3,$4} with p-signatures p1=g7g1 and p2=g1g6, respectively. The corresponding Q(,) can be 
calculated as follows: First, p1|s3= p1|s3 =g1g7, p2|s1= p2|s2 =g6g1. Then, according to Definition 4, we 
have 

2
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. Thus, 

Q(,)=B(1,2)=1. 
 
The problem statement 

Given an expression matrix D of m samples and n genes, and a grouping threshold , our goal is 
to find the phenotype structure with the largest quality score Q(,). To filter out the blocks with too few 
or too many samples, we introduce Mins and Maxs to limit the minimum and the maximum number of 
samples in a submatrix. 
 

THE FINDER ALGORITHM 
 

FINDER consists of three major steps: (1) trivial g*-sequences identifying; (2) phenotype 
structure discovery; and (3) refinement. 
 
Trivial g*-sequences identifying 

A subsequence $ is trivial if it is common to all m samples. Clearly, a trivial sequence cannot be 
selected as a p-signature of a specific phenotype. Thus, the genes involved in the trivial subsequences 
can be ignored. However, it is intractable to exhaustively enumerate all trivial subsequences. The 
following theorem states that the search space of trivial subsequences can be dramatically reduced. 
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Theorem 1: The genes covered by all trivial g*-sequences are just as that covered by all closed trivial 
significant chains. 

Proof: Let $ be a trivial g*-sequence and x$ be a gene not covered by any significant chain of 
$. According to the sliding window method discussed in Section 1, there must be another gene y$ such 
that either xy or yx form a significant chain, which contradicts the assumption. Hence the proof.  
Theorem 2 indicates that, instead of testing all trivial g*-sequences, we only need to consider the closed 
trivial significant chains, the lengths of which are usually much shorter than that of the original g*-
sequences. As a result, the search space is greatly reduced. 
 
Phenotype structure discovery 

A block (or submatrix) is the basic element of a phenotype structure, which consists of a subset 
of samples and the corresponding p-signature. The basic idea of the phenotype structure discovery 
method proposed in this paper can be described as follows. First, generate the candidate p-signatures. 
Then, derive the corresponding blocks from the candidate p-signatures. Finally, find the block 
combination of the largest Q(,) by testing various block combinations. 

According to Definition 3, a p-signature must be a significant chain. Thus, a naive candidate p-
signature generating method is to check all significant chains, which, however, is infeasible in practice. 
The following theorem states that the candidate p-signatures can only result from the closed significant 
chains. 
Theorem 4: Let (,) and (,) be two candidate phenotype structures, where  ={set1,set2,�,setk}， 
={set1, set2,�, setk}， ={p1, p2, �, pk}， ={p1, p2,

。。。

, pk}. If i, i (1ik), pi⊑pi and pi is closed, 
then Q(,)Q(,). 

 

 
 

Figure 3 : )s|p,p(PD)s|p,p(PD iiii   
 

Proof: We prove the theorem by Figure3, where the shadowed blocks are the projections of pi 
and pi on all samples in setj. For a sample s in setj, the two dashed lines denote pi and pi|s (or pi and pi |s), 
where (x, y) is a reverse pair. The position of x in pi (resp. pi |s) is indicated by r (resp. r), and that of y 
in pi (resp. pi |s) is indicated by q (resp. q). Similarly, the position of x in pi (resp. pi |s) is indicated by l 
(resp. l), and that of y in pi (resp. pi |s) is indicated by t (resp. t). Then, [distx(pi, s)+disty(pi, s)]  
[distx(pi, s) + disty(pi, s)] = (ll+t t)  (r r+ q q) = [(l t)  (r q)] + [(t  l)  (q r)]. Since pi, 

pi,, [(t  l)  (q r)]0. Likewise, since pi|s⊑pi |s, [(l t)  (r q)]0. Therefore, the preceding formula 
is no less than 0. Extending the conclusion to any reverse pair in pi, we have PD(pi, pi |s)PD(pi, pi|s). 
Moreover, since s is any sample in setj, we have that 
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Theorem 4 ensures that we can generate all candidate p-signatures at low cost. A phenotype 
structure is a combination of blocks. Thus, the next step is, for each candidate p-signature, to find a 
sample set of this p-signature as a candidate block, and then, select the best combination as the final 
phenotype structure by testing the block combinations. Clearly, it is intractable to enumerate all block 
combinations. In this section, we develop two heuristic methods to tackle the problem. 
Aggressive Greed: This approach is inspired by the intuitive idea that the best individuals constitute the 

best combination. Concretely, according to the value of ( , | )
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signature is of the maximum average PD to its projections on the remaining samples is selected as the 
first block. The remaining blocks are selected based on the value of B(i,j), where j is the index of the 
block to be selected and i is the index of any block having been selected. The block with the maximum 
average difference on B(i,j) will be selected. 

In this approach, each block will be examined just once. That is, once block i is determined in 
step i, it will remain unchanged in the whole process. Although this approach may be of an advantage in 
terms of efficiency, it heavily depends on the quality of the first selected block. If a bad block is selected 
in the first, the remaining selections will be based on this block. 

Progressive Greed: This method allows to update a previously selected block by a new block if 
such an update can improve the quality of the block combination. During the search, for the current 
sample set X, we derive the most distinctive block (seti, pi) from it. Then, remove seti from the complete 
sample set S and search the remaining sample set Sseti to seek the next block (setj, pj) such that B(i, j) is 
maximum while si∩sj is minimum. This ensures to select the block with the maximum average 
difference and the minimum overlap with the selected blocks. The process proceeds recursively until 
every sample is assigned to a block. When such a block combination is obtained, it is considered as a 
candidate. Instead of immediately returning this candidate as the result, we track back to the sample set 
X and continue searching the remaining combinations containing X to generate new candidates in a 
similar way. During the process, we always keep track of the current best result and its quality score 
Qbest. Once a new candidate is generated, we compare its quality score, Qc, with Qbest. If Qc>Qbest, update 
Qbest to Qc; otherwise, remain Qbest and the related information. Experimental results show that this method 
greatly improves the quality of the results due to the quality-guaranteed block updating way. 
 
Refinement 

FINDER uses Mins as a terminal condition to stop the block combination test. A small number of 
samples may not be assigned to any block. Such a case can be dealt with by reassigning those samples 
according to certain criterion. 

In this paper, we address the problem by breaking every current p-signature into some smaller 
fragments. Then, a sample is reassigned by combining the decisions from all fragments. The process is 
treated as a voting based on PD and the cross-projection. That is, for a sample s to be reassigned, we 
project the fragments of every block onto $i and compute the average projection distance PDavg. Finally, 
s is assigned to the block with minimum PDavg. Next, a top-down recursive process is given to break a p-
signature into the smaller fragments. 

Suppose that pi is a closed p-signature. We first generate all its immediate sub-patterns, pi1, pi2, 
�, pin, by removing a single item from pi, respectively. We then compare the supports of pi and pix for 
all x[1,n]. If the support of pix, i.e. the number of samples containing pix, is larger than that of pi, i.e. 
supp(pix)>supp(pi), we remove pix and all its immediate sub-patterns from considering. Otherwise, we 
recursively continue the process for pix. The patterns that can not be further reduced are left as the final 
fragments. 
 

PERFORMANCE EVALUATION 
 

In this section, we study the performance of FINDER by evaluating its efficiency and 
effectiveness. The algorithms are coded in C++. All experiments are conducted on a 2.0-GHz HP PC 
with 1G memory running Window XP. Both real and synthetic datasets are used in the experiments. The 
real datasets are colon tumor[9], ALL-AML leukemia[7] and Hereditary Breast Cancer (HBC)[23]. TABLE 
2 shows the statistics of these three datasets. The synthetic datasets are generated by a specific data 
generator in [?]. Unless otherwise specified, the default parameters setting for FINDER are =0.3, 
Mins=0.3, Maxs=0.5. 
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TABLE 2 : The information of three real microarray datasets 
 

dataset # sample # gene class1 : # class1 class2: # class2 class3: # class3 
Colon 62 2000 negative:40 positive:22 N/A 

Leukemia 38 5000 B-ALL:19 T-ALL:8 AML:11 
HBC 22 3326 BRCA1:7 BRAC2:8 Sporadic:7 

 
Efficiency 

In this section, we evaluate the efficiency of FINDER by studying how response time varies with 
respect to #sample and #gene, where the synthetic datasets are used. Since no previous work can be 
directly applied to the problem setting in this paper, we implemented a naïve two-step method as the 
baseline method. First, all candidate p-signatures are mined using BIDE[12], one of the state-of-the-art 
closed sequence mining algorithm; Second, do an exhaustive combination test over all derived blocks. 
Two greedy strategies proposed in this paper are also implemented, which are called A-FINDER 
(aggressive approach) and P-FINDER (progressive approach), respectively. 

As Figure 4 shows, the running time of the three phenotype structure discovery algorithms 
becomes longer as #sample and #gene increases. This is because larger #sample may lead to more 
sample combinations to be tested and the increasing of #gene makes the number of EDGs in every g*-
sequence larger. Note that FINDER is two or three orders of magnitude faster than the naive method. 
This confirms the efficiency of the proposed algorithm. 

 

 
 

Figure 4 : Scalability 
 

Effectiveness 
In this section, we evaluate the effectiveness of FINDER in terms of statistical and biological 

significance. In the statistical sense, we use p-value. In the biological sense, we show some interesting 
results discovered from the Leukemia dataset, and explain them based on GENE database of NCBI. 
 
Statistical significance 

A p-value indicates the probability that a phenotype structure is formed by chance. We use the 
hypergeometric distribution to calculate the p-value for each block of a phenotype structure. 
Specifically, it is computed as follows: 
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In the above equation, m is the total number of samples in a given dataset, and M is the number 

of samples annotated to a particular phenotype. Eq.(9) calculates the probability that seeing at least k 
samples annotated to that particular phenotype in randomly chosen t samples. This approach is widely 
used to evaluate the statistical significance of the result in many existing tools, such as Gene Ontology 
and GO TermFinder. A smaller p-value indicates a stronger statistical significance. If most of the blocks 
of a phenotype structure are of small p-values, the phenotype structure is unlikely formed by chance. 
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Figure 5 : The result visualization 
 

To show the power of the ordered gene expression values in the phenotype structure discovery 
more clearly, we visualize the phenotype structures discovered from the three real datasets in Figure 
5(a)~5(c), where the strength of gene expression is mapped into the darkness of color. The stronger the 
gene expresses, the darker the color is. The gene orders (p-signatures) and the sample labels are given at 
the top and the left of every block, respectively. �*� marks the samples not properly grouped. Clearly, in 

each block of a phenotype structure, the mapped expression values are always from lightness to 
darkness. The order among genes can be used to discover the phenotype structures of statistical 
significance. 
 
Biological significance 

In this section, we present some interesting results discovered by FINDER from the Leukemia 
dataset[7] and show that FINDER is able to find not only the genes identified by the existing methods, 
but also some important genes ignored by the existing methods. 

TABLE 3 lists all genes involved in the phenotype structure discovered from the Leukemia 
dataset. If a gene is ranked within top-100 by two or more commonly used statics, it is marked with �*�. 
As shown in TABLE 3, genes MB-1, CST3 and MacMarcks are top-ranked genes by all eight methods. 
They are also discovered by FINDER. Indicated by GENE, a searchable database of genes in NCBI, 
MB-1 gene encodes the Ig-alpha protein of the B-cell antigen component. It is a sensitive and specific 
reagent for B-lineage blasts that will aid in the classification of B-cell precursor ALL and in the 
identification of biphenotypic leukemia presenting as AML[14]; CST3 encodes the most abundant 
extracellular inhibitor of cysteine proteases, which is found in high concentrations in biological fluids 
and is expressed in virtually all organs of the body. A mutation in this gene is associated with amyloid 
angiopathy (e.g. AML); MacMarcks gene is proven to be immune-related[15]. Tumor is often immune-
related, thus it is biologically plausible to find MacMarcks in the phenotype structure of Leukemia. 
Genes IGHM and TCL1 are identified by two and five methods in TABLE 3, respectively. As GENE 
states, IGHM is the antigen recognition molecule of B cells; TCL1 is activated in T-cell leukemias by 
translocations and inversions that juxtapose it to regulatory elements of T-cell receptor genes, and 
activation of TCL1 in mature T-cells causes T-cell leukemia in humans[16]. Immunologic processes have 
been well studied by Yunji�s mathematical model about the macrophage activation. A novel network 

model and framework are established[17-19].  
For the genes without �*�, extensive biological evidences indicate that these genes are also 

related to leukemia. For example, TCRB is ranked outside top-100 in TABLE 3. However, TCRA is 
reported by five methods in TABLE 3[13]. From the gene description in the Leukemia dataset[7], we 
know that the two are both T-cell receptors. They have very similar function. Moreover, GENE database 
confirms that chromosomal abnormalities involving TCRB are closely associated with T-cell 
lymphomas. Also, we find two other interesting cases. That is, the gene sequence <MB-1 GUK1 
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GLUL> identifies T-ALL phenotype with precision=88.9% and recall=100%, and the gene sequence 
<CST3 GUK1 MB-1 ER-60> identifies B-ALL phenotype with precision=100% and recall=94.7%. It is 
the order among genes, which is ignored by singleton or combination discriminability based methods, 
that enables FINDER to discover the statistical significant phenotype structures with higher accuracy 
and fewer genes. Moreover, such order may provide a possible explanation to some diseases from a new 
point of view. For example, due to the small p-value, it is statistically reasonable to infer that the cause 
of T-ALL may be that gene GLUL expresses more than gene GUK1 and gene GUK1 expresses more 
than gene MB-1 in an individual.  

 
TABLE 3 : The genes discovered from Leukemia dataset 

 

gene 
RANK 

T-
test 

Information 
gain 

Sum of 
variances 

Twoing-
rule 

Gini-
index 

Sum 
minority 

Max 
minority 

ID 
SVM 

MB-1* 4 18 26 26 26 41 34 21 

CST3* 49 4 3 3 3 2 2 4 

MacMarcks* 19 38 29 29 29 21 13 27 

TCL1* 42 30 61 61 61 >100 >100 >100 

IGHM* 69 >100 >100 >100 >100 >100 83 >100 

TCRB >100 >100 >100 >100 >100 >100 >100 >100 

GUK1 >100 >100 >100 >100 >100 >100 >100 >100 

GLUL >100 >100 >100 >100 >100 >100 >100 >100 

ER-60 >100 >100 >100 >100 >100 >100 >100 >100 
 

CONCLUSION 
 

In this paper, we model the phenotype structure discovery problem from a sequence perspective. 
Different from the existing methods, the proposed g*-sequences model uses the ordered gene expression 
values as the discriminative signatures. It enables to find highly accurate phenotype structure with a 
small number of genes. Further, we develop two progressive exploring strategy to tackle the proposed 
problem. Extensive experimental results on real and synthetic datasets show that our method 
dramatically improves the accuracy of the discovered phenotype structure (in terms of statistical and 
biological significance). Moreover, FINDER is 2~3 orders of magnitude faster than the alternative 
methods. 
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