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KEYWORDSABSTRACT

In this paper, an HIV-1 infection dynamics model with three discrete de-
lays is presented. This model takes into account delays contacted by the
virus particles to achieve contamination. Using the Boubaker Polynomi-
als Expansion Scheme BPES, it is proved that the consideration of these
delays can have a positive effect on the asymptotically stable equilibrium.
The main aim of the study is to identify model mechanisms that allow one
to explain the trends observed in experimental clinical records, and hence
to propose decision-making assistance for eventual drug therapeutic pro-
cedure and cure. The performed three-delay model provides better fits to
patient data than zero-delay models.       2012 Trade Science Inc. - INDIA

INTRODUCTION

In the last three decades, a tremendous amount of
attention has been paid to mathematical models of Hu-
man Immuno-deficiency Virus type 1 (HIV-1) prolif-
eration dynamics[1-8]. The standard infection process
starts when HIV-1 enters its target T-cell and elabo-
rates DNA copies of its viral RNA. Consequently, the
viral DNA is inserted into the DNA of the infected cell,
which will itself produce viral particles that can bud off
the cell to infect other cells.

Throughout the world, already over 16 million
deaths at the mean age of 43 years have been caused
by this virus[2-4], bringing to attention an increasing need
for understanding and studying its action and dynamics.
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Mathematical models have been proven valuable in
understanding the dynamics of HIV infection[4-6].

One of the earliest models to primary infection with
HIV is that developed by Perelson[7], which considered
a standard four-population model involving uninfected
CD4+ T cells, latently infected CD4+ T cells, produc-
tively infected CD4+ T cells and virus population.

In some recent studies[8-10], it has been outlined that
time delays cannot be ignored in models for immune re-
sponse, since antigenic stimulation generating CTLs and
response efficiency both need a period of time. Based
on several experimental records exhibiting irregular real
time series data for randomly chosen patients[10,11], it has
been found that such delays in activating immune response
could lead to much unexpected dynamics.
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Many attempts have been performed in order to
incorporate delays into the infection dynamics equa-
tions. Nelson et al.[12] added a discrete delay in the rise
of productively infected CD4+T-cells concentration and
predicted rate of decline in plasma virus concentration
depends on the length of this delay. Zhu et al.[13] pro-
posed an extended model with two discrete delays.
Nelson et al.[14] incorporated delays in both cell infec-
tion equation and virus replication. In a different con-
text, Tam[15] and Culshaw et al.[16,17] introduced the
notion of transient infective oscillations (or fluctua-
tions) at early stages of infection, which are mainly at-
tributed to intracellular delays.

Indeed, most models assumed that infection could
occur instantaneously once a virus contacts a �target

cell�. It was also presumed that the number of target

cells remains constant during an eventual therapy and
that therapeutic action is always efficient.

To account for the time between viral entry into a
target cell and the production of new virus particles,
Herz et al.[18] included the fixed and discrete �intracel-

lular� delay by assuming that cells became productively

infected only within a defined time after initial infection.
They reported that the fact of including a delay changed
the estimated value of the viral clearance rate, without
altering productively infected CD4+ T cell loss rate. In
the same context, Mittler et al.[19] considered a con-
tinuous gamma-distributed intracellular delay. Results,
along with experimental data fitting were guides for de-
termining accurate viral clearance rate.

Grossman et al.[20] introduced a new type of delay in
the cell death process. This type of delay introduced a
gradual n-stage process. Production of virus was also
supposed to be delayed from the time of initial infection.

In this paper, we extend the development of delay
models of HIV-1 infection and treatment to the general
case of three discrete delays. The rest of the paper is
organized as follows. Section 2 gives an idea about the
model and its governing equations along with the reso-
lution protocol. In section 3, we discuss the obtained
results in comparison with experimental records and
precedent models. Section 4 summarizes the study and
gives a global conclusion.

MATERIALS AND METHODS

Governing equations and general assumptions

Simple and standard classic models for HIV-1 pro-

liferation dynamics[7,9-15] generally based on interact-
ing features between three components: infected and
uninfected CD4+ T-cells along with virus population.
The following equations describe the evolution of the
system:
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with:
x(t): Uninfected target CD4+T-cells concentration; y(t):
Productively infected CD4+T-cells concentration; z(t):
Free virus concentration in plasma; d: Death rate of
target cells; s: Intrinsic rate of production of uninfected
CD4+T-cells; k: Intrinsic infection rate; b: Rate of re-
turn to uninfected state among infected cells;: Death
rate of infected cells; K: Intrinsic infection rate; c: Death
rate of virus; N: Average number of viral particles pro-
duced.

The second equation in the system (1) traduces anti-
retroviral effects in reference to eventual healing effects
or entry in eclipse phase. It also expresses that the pro-
cess of infection to the uninfected CD4+ T-cells is in
concordance with mass action principle under mixing
homogeneity. In this case, the concentration of new in-

fected cells is proportional to the product )()( tytx .
In the three-delay model that we present here, we

call a productively infected cell, T, a cell that is produc-

ing virus. The correspondent immune delay 1 is not tan-

gibly equal to the time needed for the adaptive immune
response to emerge to control viral replication. We also

Figure 1 : A synopsis of model�s dynamics
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consider Grossman-type delays[20] 2  and 3  for both

uninfected and infected cells. System (1) is hence trans-
formed to:
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where  denotes the lag between contact and infection,  and de-
note maturity delays for uninfected and infected cells, respectively.

It can be mentioned that the first delay  includes,
the phases of growth, successful attachment as well as
penetration of virus into the target cell. The remaining
delays correspond intrinsically, for a given class of cells,
to a minimal maturity period before being recognized
as such and hence exposed to outer effects.

Resolution technique

The resolution of system (2) along with boundary
conditions has been achieved using the Boubaker Poly-
nomials Expansion Scheme BPES[21-40]. This scheme is
a resolution protocol which has been successfully ap-
plied to several applied-physics and mathematics prob-
lems. The BPES protocol ensures the validity of the
related boundary conditions regardless of main equa-
tion features. The Boubaker Polynomials expansion
scheme BPES is based on the Boubaker polynomials
first derivatives properties:
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Several solutions have been proposed through the
BPES in many fields such as numerical analysis[21-24],
theoretical physics[24-27], mathematical algorithms[28],
heat transfer[29], homodynamic[30-31], material charac-

terization[32], fuzzy systems modeling[33-38] and biol-
ogy[39,40].

Application

The resolution protocol is based on setting,  and  as
estimators to the t-dependent variables,  and , respectively :
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where are the 4k-order Boubaker polynomials[23-33], are
minimal positive roots,  is a prefixed integer, and  are
unknown pondering real coefficients.

The main advantage of this formulation is the verifi-
cation of boundary conditions, expressed in Eq. (1), in
advance to resolution process. In fact, thanks to the prop-
erties expressed in Eq. (3-4), these conditions are re-
duced to the inherently verified linear equations :
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The BPES solution for Eq. (2) is obtained, according to
the principles of the BPES, by determining the non-null
set of coefficients that minimizes the absolute difference
between left and right sides of the following equations:
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The final solution is hence:
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oscillations of the virus concentration are a characteris-
tic to zero delay models[11,12].

Discussion and perspectives

Figures 2 and 4 show that, in the primary infection
stage, a sharp decrease of CD4+T-cells concentration
occurs because of the death of these cells. Neverthe-
less, the consideration of an exclusive delay between

Parameter Value Unit 

s 104 ml-1 day-1 

k 1.47 ml day-1 

b 0.32 day-1 

 0.30 day-1 

c 2.88 day-1 

N 480 cell-1 

0x
 

5. 106 ml-1 

0y
 

5. 106 ml-1 

0z
 

4. 105 ml-1 

TABLE 1: Main parameters values

RESULTS AND DISCUSSION

Solution plots

Plots of the solutions have been obtained for the
parameter values gathered in TABLE 1;

Figure 2 gathers the result obtained for a non-delay
model (). The observed evolution of both uninfected or
infected cells and virus population is in good agreement
with results related to the standard model[7-12]. Obvious

contact and infection (Figure 3) leads to a spectacular
recovery in the uninfected cells population before reach-
ing an asymptotically stable equilibrium. This phenom-
enon has been already reported by Arafa et al.[41], Wang
et al.[42], Culshaw et al.[43] and Tuckwell et al.[44] in a
standard model framework.

Tests on the values of the parameter b confirmed this
trend. In fact, a high value of the parameter b, which is
enabled by an increasing lag between virus attack and
infection, results in an eventual expectable non-comple-
tion of reverse transcription during the delay period.

Moreover, and by examining Figures 3 and 4, we can
notice that the duration of infection transient stage region
appears to be unexpectedly shortened by considering de-
lays in the maturity for both uninfected and infected cells.
This paradox has been discussed by Nelson et al.[14]. It
has been explained, in concordance with the results of
Pellegrino et al.[45] and Kim et al.[46], by the fact that in-
fected lymphocytes are unavoidably subjected to a time
delay constrained by physical processes and hence are
momentarily inactivated for a fixed period T

a
. At this stage,

comparison between Grossman-type delays[20], and T
a
,

the average lifespan of an infected cell from infection to
death is needed. Moderate values of these delays must be
taken into account in order to preserve model validity. Par-
ticularly, the condition:  should be respected.

The recorded evolution of viral population was also
in good agreement with the records of Pawelek et
al.[47]. The observed oscillations (Figure 3-4) were simi-

Figure 3 : Evolution of uninfected, productively infected
CD4+T cells and free virus concentration in plasma (case of:

( 0    ,59.1 321    ))

Figure 2 : Evolution of uninfected, productively infected
CD4+T cellsand free virus concentration in plasma (case of:
( 0321    ))
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lar to those reported by Tam[15] and Culshaw et al.[16,17].
In this paper we employed the Boubaker Polyno-

mials Expansion Scheme BPES as protocol for study-
ing the solution of human T-cell lymphotropic virus
(HIV-I) infection of CD4+T-cells with three discrete
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Figure 4 : Evolution of uninfected, productively infected
CD4+T cells and free virus concentration in plasma (case of:
( 9.2  ,0.2   ,59.1 321   ))

delays. From the obtained result, it was clear that per-
turbation may occur in the primary stage of the infec-
tion when the concentration of uninfected CD4+ T-
cells is supposed to decrease. On the other hand, the
number of the free HIV virus particles increased with
some fluctuation as recorded elsewhere, and it was
proved that if the consideration of Grossman-type dis-
crete delays can have a positive effect asymptotically
stable equilibrium.

Some features of the model have to be enhanced.
Namely, the notion of free virus has to be revised
since the virus-target link wasn�t clearly defined in

order to have the real status of a given viral particle.
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