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ABSTRACT

In this paper, an HIV-1 infection dynamics model with three discrete de-
laysis presented. This model takes into account delays contacted by the
virus particles to achieve contamination. Using the Boubaker Polynomi-
als Expansion Scheme BPES, it is proved that the consideration of these
delays can have a positive effect on the asymptotically stable equilibrium.
Themain aim of the study isto identify model mechanismsthat allow one
to explain thetrends observed in experimental clinical records, and hence
to propose decision-making assistance for eventual drug therapeutic pro-
cedure and cure. The performed three-delay model provides better fitsto
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patient data than zero-delay models.

INTRODUCTION

Inthelast three decades, atremendous amount of
attention hasbeen paid to mathematica modelsof Hu-
man Immuno-deficiency Virustype 1 (HIV-1) prolif-
eration dynamicg*®. The standard infection process
startswhen HIV-1 entersitstarget T-cell and elabo-
rates DNA copiesof itsvira RNA. Consequently, the
vira DNA isinserted into the DNA of theinfected cell,
whichwill itself producevira particlesthat can bud off
thecdll toinfect other cdlls.

Throughout the world, already over 16 million
deaths at the mean age of 43 yearshave been caused
by thisvirug?4, bringing to attention anincreasing need
for understanding and studyingitsactionand dynamics.

© 2012 Trade Sciencelnc. - INDIA

Mathematical model s have been proven valuablein
understanding thedynamicsof HIV infection(“9.

Oneof theearliest modelsto primary infectionwith
HIV isthat deve oped by Pere sonl™, which considered
astandard four-popul ation modd involving uninfected
CD4+ T cdlls, latently infected CD4* T cells, produc-
tively infected CD4* T cdllsand viruspopul etion.

In somerecent studies®9, it hasbeen outlined that
timede ays cannot beignoredin modd sfor immunere-
gponse, Snceantigenic stimulation generating CTLsand
response efficiency both need aperiod of time. Based
onsevera experimenta recordsexhibitingirregular regl
timeseriesdatafor randomly chosen patientd*4, it has
been foundthat such dd aysinactivatingimmuneresponse
could lead to much unexpected dynamics.
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Many attempts have been performed in order to
incorporate del aysinto theinfection dynamics equa
tions. Nelson et al.'? added adiscretedeay intherise
of productively infected CD4*T-cellsconcentration and
predicted rate of declinein plasmavirusconcentration
dependson thelength of thisdelay. Zhu et al ™ pro-
posed an extended model with two discrete delays.
Nelson et al.[* incorporated delaysin both cell infec-
tion equation and virusreplication. In adifferent con-
text, Tam™ and Culshaw et al '8! introduced the
notion of transient infective oscillations (or fluctua-
tions) at early stagesof infection, whicharemainly at-
tributedtointracelular delays.

Indeed, most model sassumed that infection could
occur instantaneously once avirus contactsa ‘target
cell’. It was also presumed that the number of target
cellsremains constant during an eventua therapy and
that therapeutic actionisawaysefficient.

To account for thetime between vira entry intoa
target cell and the production of new virus particles,
Herz et al.™® included thefixed and discrete ‘intracel-
lular’ delay by assuming that cells became productively
infected only within adefined timeafter initid infection.
They reported that thefact of includingadel ay changed
the estimated val ue of thevira clearancerate, without
ateringproductively infected CD4* T cdll lossrate. In
the same context, Mittler et al.* considered a con-
tinuousgammea-distributed intracel lular delay. Results,
adongwith experimenta datafitting wereguidesfor de-
termining accuratevird clearancerate.

Grossmanet d . introduced anew typeof ddayin
thecell death process. Thistypeof delay introduced a
gradual n-stage process. Production of viruswasalso
supposed to bedel ayed from thetimeof initia infection.

Inthispaper, we extend the devel opment of delay
model sof HIV-1infection and treatment to the genera
case of three discrete delays. Therest of the paper is
organized asfollows. Section 2 givesanideaabout the
modd and itsgoverning equationsa ong with thereso-
lution protocol . In section 3, wediscussthe obtained
resultsin comparison with experimental recordsand
precedent models. Section 4 summarizesthestudy and
givesagloba conclusion.

MATERIALSAND METHODS

Governing equationsand general assumptions
Simpleand standard classic model sfor HIV-1 pro-

liferation dynamicg”**% generally based on interact-
ing features between three components: infected and
uninfected CD4* T-cellsa ong with virus popul ation.

Thefollowing equations describe the evol ution of the

Sygem:

(Uninfected ; e
target cells) @ |

Figurel: A synopsisof model’s dynamics

[%(t) = s—kz(t)x(t) — dx(t) + by(t)
y(t) =kz(t)x(t)— (bx(t) +8)y(t)
z(t) = Nay(t) —cz(t)

X(0) =X,
with B.C.:<{y(0) =Yy,

z(0) =z,

1)

with:

X(t): Uninfected target CD4*T-cdllsconcentration; y(t):
Productively infected CD4*T-cells concentration; z(t):
Freevirus concentration in plasma; d: Death rate of
target cdls; s Intrinsicrateof production of uninfected
CD4'T-cdlls; k: Intrinsicinfection rate; b: Rate of re-
turn to uninfected stateamong infected cells; &: Death
rateof infected cdlls; K: Intrindcinfectionrate; ¢: Death
rate of virus; N: Average number of vira particlespro-
duced.

Thesecond equationinthesystem (1) traducesanti-
retrovird effectsinreferenceto eventud heding effects
or entry in eclipse phase. It also expressesthat the pro-
cess of infection to the uninfected CD4* T-cellsisin
concordancewith mass action principle under mixing
homogeneity. Inthiscase, the concentration of new in-

fected cellsisproportional to the product x(t) y(t) .

Inthethree-delay model that we present here, we
cdl aproductively infected cdll, T, acell that isproduc-

ingvirus. Thecorrespondentimmunedelay z,isnot tan-

gibly equd to thetime needed for the adaptiveimmune
responseto emergeto control vird replication. Wealso
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consider Grossman-typeddays® ¢, and z, for both

uninfected andinfected cdlls. System (1) ishencetrans-
formedto:

X(t)=s—k2t —r, )X(t)—dXt—T,)+b)(1); t>supt,,t,)
YO =kt -, )X(1)-byD)+3y(t-15); t>sup, 1) ()
At)=Ndy(t—T5)—cat); t>1,

where denatesthelag between contact andinfection, andde-
notemetunity ddaysfor uninfedtedandinfected odls regpediively.

It can be mentioned that thefirst delay includes,
the phasesof growth, successful attachment aswell as
penetration of virusinto thetarget cell. Theremaining
delayscorrespondintrinsicdly, for agivenclassof cdls,
toaminimal maturity period before being recognized
as such and hence exposed to outer effects.

Resolution technique

Theresolution of system (2) a ongwith boundary
conditions hasbeen achieved using the Boubaker Poly-
nomiasExpans on Scheme BPES?+4, Thisschemeis
aresol ution protocol which has been successfully ap-
plied to several applied-physicsand mathematics prob-
lems. The BPES protocol ensuresthevalidity of the
related boundary conditionsregardless of main equa
tion features. The Boubaker Polynomialsexpansion
scheme BPESi s based on the Boubaker polynomials
first derivativesproperties:

( N
Y Bu(X) =-2N=0;
9=1 x=0
) N
B, =0 ©
9-1 X=rq
i dB4q (X) — O
a=1 x=0
N dB,, (X N
J Z 4q( ) =ZHq
a=1 x=rq a=1
2 4
4rn[2_rn]szAq(rn)
with :H, =B, (r,) = ot 7 g
BA(n+l)(rn)

Several solutions have been proposed through the
BPESinmany fieldssuch asnumerica analysig?-24,
theoretical physicg??1, mathematical algorithms?,
heat transfer’®!, homodynamici*-1, material charac-
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terizationt®3, fuzzy systems modeling!***¢ and biol-
ogy[39'4°1.

Application

Theresolution protocol isbased on setting, and as
esimatorsto thet-dependent variables, and, respectivey :

i(t)— zg x By (txry)
<V(t)— zgyXB%(txr )
®
Z(t)= zgkXB%(txr )
L 2 0 k=1

wherearethe4k-order Boubaker polynomid g%, are
minimal positiveroots, isaprefixedinteger, and are
unknown pondering red coefficients.
Themainadvantageof thisformulationistheverifi-
cation of boundary conditions, expressedinEq. (1), in
advanceto resolution process. Infact, thanksto theprop-
ertiesexpressed in Eq. (3-4), these conditionsarere-
ducedtotheinherently verified linear equations:

‘No
Z&i =-NyX,
k=1

A

No
Z&i = _Noyo
k=1

5 ©®
2.5

=-Nyz,

The BPESsolutionfor Eq. (2) isobtained, accordingto
theprinciplesof the BPES, by determining the non-null
st of coefficientsthat minimizestheabsol utedifference
between |eft and right Sides of thefollowing equations:

dB,, (txr,)
dt

No No
D& +E N x =2Ngs—dY Er, xBy ((t—1,)xr )X+
k=1 k=1

5 No No
szlgi XBAk((t_TS)xrk)szi x B (txr,)
0 k= =

& dB ,, (txr,)
dt

ééirk X

)

No No
=N8Y &) xBy ((t—15)xr,)—cY &} xBy (txr,)
k=1 k=1

Thefind solutionishence:

Xso|.(t)— ngw xB, (txr,)
ok 1
1Yal = Z&KS‘" X B (txry)
2N0;< ] ©®
Zgy. = oN Zgzsol xB, (txr,)
L 0 k=1
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Solution plots

Plots of the solutions have been obtained for the
parameter valuesgatheredin TABLE 1;

Figure 2 gatherstheresult obtained for anon-delay
modd (). The observed evol ution of both uninfected or
infected cdllsand virus populationisin good agreement
with resultsrelated to the standard mode 2. Obvious

TABLE 1. Main parameter svalues

Par ameter Value Unit
s 10 mi™ day™
k 1.47 ml day™
b 0.32 day*
5 0.30 day*
c 2.88 day*
N 480 cell™
%o 5.10° mi™
Yo 5.10° mi™
z, 4.10° mi™
8 -
- wesseens 1 Uninfected CD4™T
C i =+ = : Infected CD4°T
- C . o — - —: Free virus
s E l f' y < :Mean data” (Pawelek et al.)
2
=l o ! A
g E . \e \‘ ! ,l I
g Ed A
‘E 4 E‘ "@ : \ |
o o \ -
v r Trenaseet? % &l
g [ & ‘\\. X o
O F e A\ o 1/. ''''''' —
CR - ; ~ B .
b; 2 E ~ R :/ D Py
= C
E (*) for free virus Z'l — TZ — T3 — 0
0 : IIIIIIIII I lllllllll I IIIIIIIII I IIIIIIIII I IIIIIIIII
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time (days)
Figure 2 : Evolution of uninfected, productively infected
CD4'T cellsand freevirusconcentration in plasma (case of:
(r,=1,=1,=0))
oscillationsof thevirusconcentration areacharacteris-
ticto zero delay model g2,
Discussion and per spectives

Figures2 and 4 show that, intheprimary infection
stage, asharp decrease of CD4*T-cellsconcentration
occurs because of the death of these cells. Neverthe-
less, the consideration of an exclusivedelay between

contact and infection (Figure 3) leadsto a spectacular
recovery intheuninfected cellspopulation beforereach-
ingan asymptotica ly stableequilibrium. Thisphenom-
enon has been dready reported by Arafaet al Y, Wang
et al.*3, Culshaw et al . and Tuckwell et al.*!ina
standard model framework.

Testsonthevauesof theparameter b confirmedthis
trend. Infact, ahigh vaue of the parameter b, whichis
enabled by anincreasing lag between virusattack and
infection, resultsinan eventua expectablenon-comple-
tion of reversetranscription during thedelay period.

Moreover, and by examining Figures3and 4, wecan
noticethat theduration of infectiontransent Sageregion
appearsto beunexpectedly shortened by consdering de-
laysinthematurity for both uninfected and infected cdlls.
This paradox hasbeen discussed by Nelson et al [, |t
has been explained, in concordance with the results of
Pellegrino et al.*® and Kim et al 1“9, by thefact that in-
fected lymphocytesare unavoidably subjected toatime
delay constrained by physical processesand hence are
momentarilyinactivatedfor afixed period T . Atthisstage,
comparison between Grossman-typedeays®, and T,
theaveragelifespan of aninfected cdll frominfectionto
deethisneeded. Moderaevauesof theseddaysmust be
takeninto accountinorder to presarvemodd vdidity. Par-
ticularly, the condition: should berespected.

Therecorded evolution of vira populationwasaso
in good agreement with the records of Pawelek et
al .1, Theobserved oscillations (Figure 3-4) weresimi-

8

E ........ : Uninfected CD4°T
- = - —: Infected CD4°T
e C — - —: Free virns
) C <> 2 Mean data™ (Pawelek er al.)
E OF
— r
= By e,
= R et oy
E E{}: s T
= 4EF & g e
E F- v : \<> ---------
- = A B -
= C™ sy * 3 /\_h___.—.::'-r i
5 =T WE ey % @
- S e e e
22F
) r
) =
i r
C (%) for free virus Tl = 1;59, TZ — TB — 0
D_IIII\||||I|||||||IIIIIIIIIIIIIIIIIIIIIIIII|||||||
0 20 40 60 80 100

time (days)

Figure 3 : Evolution of uninfected, productively infected
CD4'T cellsand freevirusconcentration in plasma (case of:

(7, =159, 7,=7,=0))
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lar to those reported by Tam® and Culshaw et al 11617,

Inthis paper we employed the Boubaker Polyno-
mials Expansion Scheme BPES as protocol for study-
ing the solution of human T-cell lymphotropic virus
(HIV-1) infection of CD4*T-cellswith three discrete

8

E -------- : Uninfected CD4T
r =« = : Infected CD4'T
s C — - —: Free virus
™ C & : Mean data® (Pawelek er al.)
5 C
g8 0f
= C
g = & A ey
& F . B 2, ¢ T
E E "-,,/ 5 w o 5
2 4F o @ P _‘<_>,_ ____________
= C i BRPEE S b
3 o <>.f i - &
= L 7
=) i
&) C 7
REEF e
en o T
2 By T,
E (*) for free virus Fyi= 1.59, I, =2.0, T =2.9
0:III|||||IIIIII||||II|III||IIIIIIIIIIIIIIIIIIIIIII
0 20 40 60 80 100

time (days)

Figure 4 : Evolution of uninfected, productively infected
CD4'T cellsand freevirusconcentration in plasma (case of:

=159, 7,=20, 7,=29)

delays. From theobtained result, it was clear that per-
turbation may occur in the primary stage of theinfec-
tion when the concentration of uninfected CD4+ T-
cellsissupposed to decrease. On the other hand, the
number of thefree HIV virusparticlesincreased with
some fluctuation asrecorded el sewhere, and it was
provedthat if the consideration of Grossman-typedis-
crete delays can have apositive effect asymptotically
stableequilibrium.

Somefeaturesof themodel haveto be enhanced.
Namely, the notion of free virus hasto be revised
sincethevirus-target link wasn’t clearly defined in
order to havethereal statusof agivenviral particle.
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