

NICKEL ACETATE AS EFFICIENT ORGANOMETALLIC CATALYST FOR SYNTHESIS OF BIS (INDOLYL) METHANES

VISHVANATH D. PATIL * , KETAN P. PATIL, NAGESH. R. SUTAR and PRATHAMESH V. GIDH

Organic Chemistry Research Laboratory, Department of Chemistry, C. K. Thakur A. C. S. College, New Panvel, RAIGAD (M.S.) INDIA

ABSTRACT

Bis(indolyl) methanes derivatives have been synthesized using a catalytic amount of organometallic anhydrous nickel acetate at room temperature with excellent yields. The remarkable selectivity under mild, neutral and, inexpensive catalyst are attractive features.

Key words: Bis(indolyl) methanes, Nickel acetate, Aldehydes, Ketones.

INTRODUCTION

The development of simple, efficient and economically viable chemical process or methodologies for widely used organic compounds are in great demand¹. Various methods have been developed for their synthesis using Lewis acid catalysts²⁻⁸, ionic liquids⁹, trichloro-1,3,5-triazine¹⁰, and potassium hydrogen sulphate¹¹. However, many of these reported methods suffer from one or more disadvantages such as harsh experimental procedure and reagents that are expensive, moisture sensitive. A mild and efficient catalyst for the synthesis of bis(indolyl) methanes is highly desirable.

EXPERIMENTAL

In this communication, we report a synthesis of Bis(indolyl) methanes by using organometallic anhydrous nickel acetate as catalyst. A wide variety of compounds that were

-

^{*}Author for correspondence; E-mail: patilvd148@yahoo.in, ketanpatil999@rediffmail.com; Fax: 022 7467600

applied to the optimal reaction conditions to prepare a wide range of bis(indolyl) methanes (**Scheme 1**).

R, R'= H, Phenyl, Alkyl

Scheme 1

General experimental procedure for Bis(indolyl) methanes

A mixture of benzaldehyde (2 mmol), Indole (4 mmol) and anhydrous $Ni(OAc)_2$ (0.1 mmol, 30 mg) was stirred magnetically at room temperature, acetonitrile (1 mL) and the progress of the reaction was monitored by thin-layer chromatography. The product was dried over anhydrous Na_2SO_4 and further purification by column chromatography.

RESULTS AND DISCUSSION

The reaction proceeded efficiently and smoothly at room temperature in presence of anhydrous Ni(OAc)₂ as a catalyst, and the products were obtained in excellent yields. Various aromatic aldehydes, aliphatic aldehyde and ketones gives the corresponding products with excellent yield (Table 1, entries 1-9).

Table 1: Synthesis of bis(indolyl) methanes

Entry	Aldehyde (a)	Indoles	Product (b)	Time (min)	Yield ^c (%)
1	СНО	N H		25	94

Cont...

Entry	Aldehyde (a)	Indoles	Product (b)	Time (min)	Yield ^c (%)
2	СНО	N H	OH N N H H	25	92
3	CHO NMe ₂	N H	NMe ₂ NMe ₂ N N N H H	55	90
4	CHO	N H	CI N N H H	55	87
5	CHO NO ₂	N H	NO ₂	75	88

Cont...

Entry	Aldehyde (a)	Indoles	Product (b)	Time (min)	Yield ^c (%)
6	СНО	N H		75	87
7	CHO	N H	N N N H H	85	86
8	CHO Me	Me N H	Me N N H H	35	89
9	Ph Me	N H	Ph Me N N H H	110	87

^aThe substrate was treated with indole (4 mmol) by stirring at room temperature with anhydrous Ni(OAc)₂ in presence of acetonitrile as solvent;

Spectral data

3,3'-Bisindolyl phenyl methane (1b): Pale-red solid, yield 94%, m.p. 122-124°C

IR (KBr): 736, 1012, 1173, 1336, 1415, 1599, 2848, 3024, 3054, 3409 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ = 7.8 (s, 2H); 7.1-7.4 (br m, 8H); 6.3-6.8 (m, 5H); 4.1-4.4 (s, 2NH);

^bAll products were identified by their IR and ¹H NMR spectra;

^cIsolated yields after column chromatography

2.2 (s, H): ¹³C NMR (CDCl₃): 144.1, 136.7, 128.7, 128.6, 127.2, 126.9, 123.7, 121.9, 119.9, 111.1, 40.2. EIMS; m/z 322

ACKNOWLEDGEMENT

The authors acknowledge the partial support of this work by Prof. G. A. Meshram, Associate Professor, Department of Chemistry, University of Mumbai, India.

REFERENCES

- 1. V. D. Patil, P. V. Gidh, P. C. Patil, N. Sutar and K. P. Patil, Efficient Synthesis of Bis(indolyl) Methanes by using Silica Supported TCAA, Int. J. Chem. Sci., **12(1)**, 248 (2014).
- 2. J. S. Yaday, V. B. S. Reddy, V. C. R. S. Murthy, M. G. Kumar and C. Madan, Lithium Perchlorate Catalyzed Reaction of Indoles, An Expeditious Synthesis of Bis(indolyl) Methanes, Synthesis, **5**, 783 (2001).
- 3. R. Nagarajan and P. T. Perumal, InCl₃ and In(OTf)x Catalyzed Reaction of 3-Acetylindolylmethanes and Indolylquinoline Derivatives, Tetrahedron, **58**, 1229 (2002).
- 4. X. L. Mi, S. Z. Luo, J. Q. He and J. P. Cheng, InCl₃ Catalysed Conjugate Addition of Indoles with Electron Deficient Olefins, Tetrahedron Lett., **45**, 4567 (2004).
- 5. S. Ma, S. Yu and Z. Peng, Sc(OTf)₃-catalyzed Efficient Synthesis of Beta, Beta-Bis(indolyl) Ketones by the Double Indolylation of Acetic Acid 2-methylene-3-Oxobutyl Ester, Org. Biomol. Chem., **3**, 1933 (2005).
- 6. P. B. Bandagar and A. K. Shaikh, Molecular Iodine-catalyzed Efficient and Highly Rapid Synthesis of Bis-indolyl-methane Under Mild Conditions, Tetrahedron Lett., 44, 1959 (2003).
- 7. L. M. Deb and J. P. Bhuyan, An Efficient and Clean Synthesis of Bis(indolyl) Methanes in a Protic Solvent at Room Temperature, Tetrahedron Lett., **47**, 1441 (2006).
- 8. R. R. Nagawade and B. D. Shinde, Zirconyl(IV) Chloride-Catalysed Reaction of Indoles: An Expeditious Synthesis of Bis(indolyl) Methanes, Acta. Chim. Slov., **53**, 210 (2006).

- 9. G. Babu, N. Sridhar and T. P. Perumal, A Convenient Method of Synthesis of Bis-Indolyl-Methane, Indium Trichloride Catalysed Reactions of Indole with Aldehydes and Schiff's Bases, Synth. Commun., **30**, 1609 (2000).
- 10. H. Firouzabadi, N. Iranpoor and A. Ali Jafari, Preparation of Indolyl Methanes Catalyzed by Metal Hydrogen Sulfates, J. Mol. Cat. A: Chem., **244**, 168 (2006).
- 11. M. V. G. Sharma, J. J. Reddy and S. P. Lakshmi, A Versatile and Practical Synthesis of Bis-indolyl-methane/bis-indolyl Glycoconjugates Catalysed by Trichloro 1,3,5-Triazine, Tetrahedron Lett., **45**, 7729 (2004).

Accepted: 27.03.2015