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ABSTRACT

In this paper, we analyze an N-policy, two-phase queueing system where the service station is
subject to breakdowns while in operation and repair may delayed due to non-availability of the repair
facility. Arrivals follow a Poisson process with rates depending upon the system state namely-vacation,
startup, operational and breakdown state. The service is in two essential phases; the first one being batch
service to all the customers waiting in the queue and the second one is individual to each of them. The
server is turned off each time the system empties. As and when the total number of customers in the
system reaches the threshold N(N >1), the server is turned on and requires preparatory time before starting
the batch service. The customers who arrive during batch service are not allowed to join the batch, which
is in service, but are bunched together and are served along with the other arrivals during the next visit of
the server to the batch queue. Startup times, uninterrupted service times, length of each delay period and
repair period follows exponential distribution. Closed form expressions for the mean system size at
various states of the server are derived. Effect of the system parameters on the optimal threshold N is
studied through numerical examples.

Key words: Two-phase, Vacation, Breakdowns, N-policy, Delayed repair, State dependent arrival rates.
INTRODUCTION

In many real-life queuing systems like communication systems, manufacturing
systems, and computer networks, the server is subject to unpredictable breakdowns and can
be repaired. The performance of such systems may be affected by the breakdowns of the
service station and delay in repair due to non-availability of the repairman or of the
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apparatus needed for repairs. Therefore, it is necessary to see how the breakdowns affect the
server's level of performance. The arrival of customers may depend on the state of the
system. Gray et al.' analyzed a multiple-vacation queueing model where the service station
is subject to breakdowns while in operation and the arrival rates depend upon the state of the
system. Hanumantha Rao et al.? presented the optimal operating policy of an N-policy two
phase M/M/1 queueing model with unreliable server, server startup and state dependent
arrival rates. Vasanta Kumar et al.’ studied optimal strategy analysis of an N-policy two-
phase M/Ey/1 queueing system with server startup, breakdowns and gating.

Present study is aimed to analyze the economic behaviour of an N-policy M/M/1
gated queue with service in two phases, state dependent arrival rates and the server is
typically subject to unpredictable breakdowns and delay in repair.

Mathematical model

The following assumptions and notations are used to study the steady state behaviour
of the model under consideration.

The service is in two phases, the first one being batch service to all waiting
customers in the queue and the second one is individual to each of them. The uninterrupted
batch and individual service times are of exponential lengths. The server goes on vacation at
the instant when the queue becomes empty and continues to take vacation until N customers
accumulate. The server needs a startup time for preparatory work, which is of exponential
length. The service mechanism breakdowns occur only during active service and repair will
not take place immediately due to non-availability of the repair facility. Hence, there will be
delay in repair. Server breakdowns occur at a poisson rate. The delay times and repair times
are of exponential length. The arrival processes during vacation, startup, active service, and
breakdown are poisson with different arrival rates. All inter-arrival, vacation, startup,
service, inter-breakdown, delay and repair times are independent of each other. By gating,
we mean that the customers who arrive during batch service are not allowed to enter the
batch, which is already in service, but are bunched together and served along with other
arrivals during the next visit of the server to the batch queue.

Notations:

A1: Arrival rate during vacation and startup
Az : Arrival rate during batch or individual service

A3 : Arrival rate during vacation
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: Vacation rate

: Batch service rate

: Individual service rate
: Breakdown rate

: Delay rate

QR 33 JUnv T ™ <D

: Repair rate

In order to study the steady state behavior of the system, the following steady state
probabilities are defined.

V (1,0) = The probability that there are i customers in the batch queue when the
server is on vacation, I = 0,1, 2,...N-1.

Q (1,0) = The probability that there are i customers in the batch queue while the
server is in pre-service, where i =N, N+1 , N+2,...

B (1,0) = The probability that there i customers in the batch, which is in batch
service,1=1, 2, 3...

P (i, j) = The probability that there are i customers in the batch queue and j customers
in the individual queue while the server is in individual service,1=0, 1,2,...andj=1, 2, 3...

P4 (i, j) = The probability that there are i customers in the batch queue and j customers
in the individual queue while the server is in individual service, but found to be broken down
and waiting for repair ,1=0,1,2...,andj=1,2,3....

P. (i, j) = The probability that there are i customers in the batch queue and j customers
in the individual queue while the server is in individual service, but the server is under
repair,1=0,1,2...,andj=1,2,3....

The steady state results

The steady state equations satisfied by the system size probabilities are as follows:

M V(0,0) = P (0,1) (D
M V0 = V(i-1,0), | <i<N-1 .2
(O +0) Q (N, 0) =% V(N -1, 0) ..3)

M+0)Q3G,0=1,Q>(—-1,0),i>N .4
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B B(i,0) = uP(i, 1), 1 <i<N -1 .05
B B(i,0) = uP(i, 1)+ 0Q (i, 0), i >N ...(6)
(A2 + &+ wP(0, j) = pP(0, j + 1) + BIlo B, 0)P + aPy(0, j), j = 1 (1)

M+ E+ PG, ) =uPG,j+ 1)+ BILBG, 0) + A, PG—1,)) +aP,(0,7),i>1,j>1 ...(8)

(A3 +m) Pg(0, 1) = EP(0, j), j = 1 -9
(A3 + 1) Pa(i, ) =EP(1, ) + APa (i - 1, ), 121,71 -..(10)
(A3 +a) P(0, )) =nPq (0,),j > 1 -(11)
()\’3 + (X.) Pr(la.]) = T]Pd (17.]) + )"3Pr (1 - laj)a i 2 1:_] > 1 (12)
where IT; =%, m; is the probability that there are i arrivals during batch
+
2
service. Define [1(z) = Zio nz,|zZ <1

We define the following generating functions to solve the steady state equations

N-1 0 e
F,(z) = Z V(i,0)z!, Fy(2) = Z Q(i,0)z!, Fy(z) = Z B(i, 0)z},
i=0 i=N i=1

Fa(zy) = i i Pa(i, NZ'y), Fr(zy) = i i P.(i, Nz'y,

i=0 j=1 i=0 j=1

Fo(zy) = ) Y PGy, Ri@) = Y PGz, §0) = Y Py )z,
i=0

i=0 j=1 i=0

TG) = Y B )7k Izl < 1andly| <1

i=0

Multiply equation (2) by Z', sum over from 1 to N-1 and add equation (1). Then we
have —

F,(z) = ((11‘—_Z:;)V(o,0) .(13)
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Multiply equation (4) by z', sum over i from (N+1) to oo and add z" times equation
(3). Then we have —

21zN v(0,0)

F,(z) = D) 10) ..(14)
Multiply equations (5) and (6) by z', sum over i from 1 to co. Then we have —
PFp(z) = uR(z) + 0F4(z) — 4,V (0,0) ...(15)

Multiply equation (8) by Z', sum over from 1 to o and add equation (7). Then we
have

[, (1 —2) + &+ ulRj(z) = pRj41(2) + BB, 0)I1(z) + oT;(z) ...(16)
Multiply this equation by y’ and sum over j from 1 to co. Then we have —
Moyl —2) + &y + w(y — DIF,(zy) = By TI(2)F, (y) — nyRy(2) + ayF.(z,y) ...(17)
Similarly from the equations (10) to (13), we get —
[A3(1 = 2) + nlFa(z,y) = EF,(zy) -.-(18)
[A3(1 —2) + a]F,(zy) = nFa(zy) -..(19)

Substitute the value of F,.(z,y) in equation (17). Then we have —

agny
hy(l—z)+&y+ply—1 - 0D T 00 -DFm Fy(z,y)
= —uyR;(z) + PyIl(z)F,(y) ...(20)

Put y = z and substitute the value of F;,(z) from equation (15) in equation (20) and
cancel the common factor (z-1) on both sides. Then —

(0 =22) (1 = 2) + ) O5(1 = 2) + 1) + EA32(1 — 2) — D3(a + 1)z
(3(1—2) + ) (h3(1 —2) + 1)

F,(z2)

zZN-
(@ M) )

= uzR, TR ...2DH
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This can be written as —

2 TI(Z)2V (0, o)( (
O1(1-2)+0)

o)

D(2)F,(z,2) = [uzR,(2) ((H(Z) 1)) +
A1 —-2)+8)(s(1—2)+1n)...(22)
Where

D(z) = [-A257% + (2045 + 2hs( + @) + ud3 +238)22 + (—AA3 — Ahs(n + ) —
hana — 2p05 — Aap(n + @) — A58 — As¥(m + @)z + (U3 + Asp(n+ @) +
una)] ...(23)

Putz=1and y = 1 in equations (13), (14), (19), (21), and (22). Then —

F,(1) = NV(0,0) .24

Fo(1) = 2502 .25

F,(1) = ”RE(” ...(26)

F,(1,1) = an [uR1(1)n’(1) + 2,V (0,0) 2222 (1) .(27)

Fy(1,1) = 24D .(28)

and Fr(1,1) = 2252, (19

Where IT'(1) = A, /p.
The probability that the server is in vacation or startup is given by —

EM+FQ)=1-2-2-22 (_+_>

This gives —

(g oo =13 -0 ) =1
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NN N £
Where p—ﬁ+”(13+n+a) ...(30)

Hence the stationary queue length distribution exists if p < 1.
The generating function of the queue length distribution is given by —

F(z,z) = F,(z) + F;(2) + F,(2) + F,(z,2) + F4(z,2) + F.(2,2) ...(31)
The normalizing condition is F(1,1) = 1.

This condition gives —

%[1+/:D2(—171‘;(1+%+§)]R1(1)=p—%(1+%+§)(1—p) ..(32)

Using the conditionlimy,_,; F,(1,y) =lim,_,; F,(z, 1), we obtain —

-2k =22 a-p) %)

We now determine the roots of ®(z) =0 for positive A;. Referring to (23), @(z) is
cubic equation. ®(z) has three changes of sign and ®(-z) has no change of sign. By
Descarterule of signs the equation ®(z) = 0 has three positive real roots. In order that steady
state queue length distribution to exist, all the three roots of the equation ®(z) = 0 must be
greater than one. Since the coefficient of Z’ in ®(z) is negative, the roots of ®(z) = 0 will be
greater than 1, if and only if ®(1) > 0, ®(1) < 0Oand ®'(1) > 0. Since ®(1) = (u —
Ao — AzE(n + a),we must assume thatuno > A,no + AzE(M + o).

This gives —

A2y ME(1 1
21k (n+a)<1 ..(34)

Now (30) and (34) implies that p is greater than B, A, and A;. Hence if (34) holds,
then —

(1) = Ay —pwM+a) —Ana—2a3EM+a) <0

and @'(1) = 205(n — Ap) + 20,05 (n + @) + 2230 > 0
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Thus, if we assume that (34) holds, then the roots z;, z; and z; of ®(z) = 0 will be
greater than 1.Under the condition (34), choose A, A;and f such that 0 <V(0,0) <1.

Let k, =i,k2 =iand ky =~

Z3
Then @(z) = p(A5 + As(n + @) + na) (1 — k;2)(1 — k,z) (1 — k,2).
Now, from (22).

u(?é +AM+o) + na)(l —k12)(1 = k,2)(1 — k32)F,(2,2)

(H(z) 1 M@V, 0)( (Z—ll)+x1)
(A1 (1-2)+6)

= |nzR,(2) (3(1=2) +n)(A3(1 - 2) + 0) ...(35)

Expected number of customers in the system

Using the probability generating functions expected number of customers in the
system at different states are presented in this section. Let Ly Lg Ly, Ly Lgand L, be the
expected number of customers in the system when the server is in vacation, in startup, in
batch service, in individual service, waiting for repair during individual service and under
repair during individual service states, respectively. Then —

L, = ZN5'1V(0,0) = F,(1) = *E=2v(0,0), ...(36)
Lo = 22,1 Q(, 0) = Fy(1) = 24572v(0,0), .(37)
L, = ¥N1iB(i, 0) = F, (1) :%R;(1)+MV(0 0) ...(38)
Ly = X211 P j)Psso = Fy(1,1) = ...(39)
~ 1 flkl 1 fzkz 1- kg] BAD + @(1) [MRl(l)n P Fam (DR D) + R (1)
—11”9";‘;1(;"0) [(1 + H’(1)) (A, + NO) + @] + 2na (;;;’(Vl")) V(0,0)
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: A1 (A1 +NO y+9)
A3 |HR (DIT (D) + 222V (0,0)| 525
1. « . ! 4 ,
Lg = X511 Py (i) = F4(1,1) :nipr(l’l) + %Fp(l,l) B
0 o (i i i1 : 2 ’
L =55 S +DRGD =FaD =2+ Hran+iran @y

The expected number of customers in the system is given by —

L(N) =Ly +Lg+Ly+L,+Lg+L, ...(42)
" 2 ’
Where IT (1) = % and R, (1) and R, (1) are given by (32) and (33), respectively.

Some other system characteristics

W, Wy, Wy, W, W4 and W, denote the expected length of vacation period, startup
period, batch service period, individual service period, delay period during individual
service and waiting period for repair during individual service respectively, then the
expected length of a cycle is given by

WC=WV+Wq+Wb+Wp+Wd+M/T

The long run fractions of time the server is in different states are, respectively.

Wy

w. = (1) =Nv(0,0) -+(43)

%: F,(1) = @ ...(44)

sz_iz Fy(1) = “RT“) ..(45)

= F(L1) = i + 2, (4 ) + 2000 ...(46)

Rt ACRVELYACHY ..(47)

and % =F.(1,1) = EFp(l,l) ...(48)
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The expected length of vacation period Wy = xﬁ Substituting this in equation (41),
1

1

We =3300)

Optimal control policy

In this section we determine the optimal value of N, which minimizes the long run
average cost for the N-policy M/M/1 gated queue with server break downs and delay in
repair. The following linear cost structure is considered.

A(N) be the average cost per unit of time , then

A = CLON) + Co (332+ 57) + Cn () + 6 (G2 +3)

+C, (Wi) —C, (%) ...(49)

where C, = Holding cost per unit time for each customer present in the system,
C, = Cost per unit time for keeping the server on and in operation,
C,, =Startup cost per unit time,
C, = Setup cost per cycle,
C, = Break down cost per unit time for the unavailable server, and

C, = Reward per unit time as the server is doing secondary work during
vacation.
Wp Wd

"W we
decision variable N. Hence for determination of the optimal operatmg N-policy, minimizing

From (45) to (48), it is observed that and — are independent of the

A(N) in (49) is equivalent to minimizing.

A;(N) = C,L(N) + C,, (%) + C, (Wi) - ¢ (52) ...(50)

We

Differentiating A, (N) with respect to N and setting the result to 0, we obtain the
optimal threshold N* of N. Hence
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20
N*= |o(c+1)+—(C,+06C,+C,)—0
BC,

where o = % (mean number of arrivals during startup time) and B =1+
e $48
0d(1) (1 + n + a)'

Sensitivity analysis

It is observed from Table 1 that (i) N* is convex with increase in the values of A,,
insensitive with increase in A, and A5, and (ii) L(N") and T(N") increase with increase in the
values of A, A,, and A;.

Table 1: The optimal N*, L(N") and minimum expected cost T(N*) by varying
(M1, A2, 23,)

(L=5p=10.0,0=0.7,£=05,a=4,n=5, C,=25, Cn= 50, Co= 30, C;= 500, C, = 40, C,= 20)

)\.2 = 1.0, }\.3 =5 ;\.1 = 0.5, )\‘3 =1.5 }\.1 = 0.5, )\.2 =1.0

M NOLN) TO(N) » N LNN) T(N) 2 N LN) TN
05 4 469 14959 1.1 4 523 16245 25 4 500 157.05

1.0 6 6.84 21047 13 4 6.66 19636 50 4 6.09 183.20
3.0 8§ 11.56 34381 14 4 758 21831 65 4 7.08 207.00
60 9 1635 46205 15 4 866 24432 80 4 850 24135
9.5 8 2056 56459 16 4 993 27506 85 4 9.12 256.26
175 7 3041 79929 1.7 4 1143 31133 95 4 10.65 293.66

From Table 2 it can be seen that (i) with increase in the values of p, p and 8, N is
insensitive, (ii) L(N") increases with increase in the value of p and decreases with increase in
B and 6, and iii) T(N") increases with increase in the values of pw and B, and decrease with
increase in 6.

It can be seen from Table 3 that (i) N*and L(N*) are insensitive with increase in the
values of C, and shows increasing trend with increase in C and Cs, and (ii) T(N") is
insensitive with increase in the values of C,, and increases with increase in C, and C,,.
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Table 2: The optimal N*, L(N") and minimum expected cost T(N*) by varying (u, B, 0)

(hy =054, =1.0, A3 = 1.5, a=4,£=0.5,1=5, Cy=25, Cn= 50, Cp= 30, Cs= 500, Co=
40, C,= 20).

B=10.0,0=0.7 u= 5.00= 0.7 L= 5.0,8= 10.0

g N° L(N*) T(N) B N LIN) T(N) O N L(NN°) TN

5 4 4.69 149.59 12 4 4.67 150.01 0.7 4 4.69 149.59
10 4 4.35 14490 14 4 4.66 15024 12 4 4.41 142.29
15 4 4.50 149.69 16 4 4.65 15039 1.7 4 4.29 139.25
20 4 4.73 156.03 18 4 4.63 150.49 22 4 4.23 137.58
25 4 4.99 162.89 20 4 4.63 150.55 2.7 4 4.19 136.52
30 4 5.27 169.99 22 4 4.62 150.60 32 4 4.16 135.80

Table 3: The optimal N*, L(N*) and minimum expected cost T(N*) by varying (Cy, Cs,
Cm)

(A, = 05,4, = 1.0, A3 = 1.5, p=5.0, f=10.0, 0=0.7, £=0.5, a=4, n=5, Cy=25, C;=40, C,=20)

C; =500, C,,=50 Cy=30, C,,=50 C=500, C,=30

C, N LN) T(N) C, N L(N) T(N) Cm N* L(N) TN

30 4

50 5

70 4.69 14959 900 6 557 179.74 300
7
8
8

4 469 14959 550
4
4

90 4 469 14959 1300
4
4

4.69 153.53 100 5.13 156.94

4.69 149.59 600 5.13  158.79 200 5.13 166.22

5.13 175.50

110
130

4.69 149.59 1700 6.47 223.64 500

5
5
5

6.02 203.04 400 6 5.57 185.27
6 5.57 193.16
7

4.69 149.59 2000 6.47 236.42 600 6.02  202.36

From Table 4 we observe that (i) N*and L(N*)decrease with increase in the values of
C; and insensitive with increase in C, and C,, and (ii) T(N*) increases with increase in Cy,
insensitive with C, and decreases with C,.
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Table 4: The optimal N*, L(N*) and minimum expected cost T(N*) by varying (Cy,Cy, C;)
(A = 05,1, =10, A3 =1.5,£=0.5,p=5.0,=10.0,0=0.7,a =4,n1 =5, C,,= 50, C,=

30, Cs= 500)
C,=40, C,=20 Cy=25, C,=20 Cy= 25, C,=40
¢, N L(N) T(N) C, N* LNN) T(N) C. N LN) TN
25 4 469 14959 50 4 469 14959 50 4 4.69 130.69
45 3 426 23682 100 4 469 14959 60 4 469 130.69
55 3 426 27942 150 4 469 14959 70 4 513 119.82
65 2 386 317.85 200 4 469 14959 80 4 513 113.32
75 2 386 36549 250 4 469 14959 90 4 513 106.83
165 1 352 69541 300 4 469 14959 100 4  5.13 100.33
CONCLUSION

An N-policy two-phase M/M/1 gated queueing of an unreliable server with pre-

service work, delay repair and state dependent arrival rates is studied. Some of the system
performance measures are obtained. Sensitivity of the optimal threshold N, expected system
length and average cost with changes in the system parameters and cost elements is also
studied.

REFERENCES

W. J. Gray, P. P. Wang and M. M. Scott, A Vacation Queueing Model with Server
Breakdowns, Appl. Mathe. Modelling, 24, 391-400 (2000).

S. Hanumantha Rao, V. Vasantakumar, T. Srinivasa Rao and B. Srinivasa Kumar,
Optimal Control of an N-policy Two Phase M/M/1 Queueing System with Server
Startup Subject to Breakdowns and Different Arrival Rates, Fareast J. Mathe. Sci.,
92(1), 3261-3272 (2014).

V. Vasanta Kumar, B. V. S. N. Hari Prasad, K. Chandan and K. Panduranga Rao,
Optimal Strategy Analysis of an N-policy two phase M/Ey/1 Queueing System with
Server Startup and Gating, Appl. Mathe. Sci., 4, 3261-3272 (2010).

Accepted : 23.03.2016



