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ABSTRACT 

The Edwards equation for polymers in solution is rigorously derived (based on the work of Freed1) 
in this review. Then it is shown, how researchers have adapted this equation for describing polymers at 
surfaces. A brief comment on the validity of the random flight model, which forms the basis for the 
Edwards equation, is made. 
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Derivation of Edwards diffusion equation 

Consider a very dilute polymer solution. The system then consists of a polymer 
chain in an infinite medium and one can consider the configurational statistics of this single 
polymer chain. For this system, the following different interactions must be considered: 

(i) The polymer solvent interaction. 

(ii) Osmotic forces, which tend to make the polymer, have uniform concentration 
throughout the medium. 

(iii) Polymer-polymer interactions: 

(a) Short-range interactions between neighboring or nearby monomers along a 
chain, also called “steric interactions”. 
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(b) Long-range interactions between monomers, which are far removed from each 
other along the chain. These are also referred to as “excluded volume” 
interactions. 

There are numerous models of varying levels of complexity for polymers in 
infinitely dilute solutions. The simplest model, the random flight chain, considers the 
polymer to be composed of segments, which are joined by bonds of fixed length. 

Consider a freely jointed chain composed of n + 1 elements (the monomers), which 
are joined successively1. They are numbered 0, 1, 2,…, n, from one end of the chain to 
another. The coordinates {rk} represent the positions of the elements, with respect to the 
origin denoted by r0 = 0. 

The potential energy of a freely jointed chain in general is written as – 

 ( )∑
=

− +=
n

1j
kj1jjk }{rW )r,(r u})({r U  …(1) 

where the first term accounts for the chain connectivity and the second term 
encompasses all other interactions. 

This can be further written as: 
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where Rj = rj – rj–1. 

 All the statistical properties of the chain are contained in the distribution: 
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where [ ])(R βu exp)(R τ jjjj −=  are the bond probabilities. 

 Considering the case, where all bonds are the same: 

 )(R τ)(R τ jjj =  …(7) 
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For a chain with n Gaussian links with average segment length Δs and contour 
length L, the bond probabilities are: 
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where n Δs = L and /L.R2=l  
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Now the partition function is: 

 ( )[ ]}{r βU exp }{r dZ kk −= ∫  …(11) 
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and the distribution for the entire chain configuration is – 
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 Using the following normalization for )(R τ j : 
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and setting W = 0 in Equation (10), leads to the probability distribution function 
( )}{r P k  for the entire chain configuration: 
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 is the normalization factor and is fixed by the condition that 

( )}{r P k  satisfy: 
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Now comes a crucial part. Since Equation (16) gives the “probability” of a particular 
chain configuration n10 r ,...,r 0,r = , it is clear that this chain configuration }{rk can be taken 
to be the discrete representation of the continuous curve r (s). 

Let )(sr Δs) (jr r jj ==  denote the position of the ‘j’th segment with respect to the 

origin 0)(s0 =  which, without loss of generality, is taken as 0r0 = . One can now take the 
limit LΔsn  ,n 0,Δs =∞→→  to obtain a representation of a continuous equivalent random 
flight chain. 
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 Thus, in this limit, the probability ( )}{rP k  becomes: 
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and [ ] (s)δr  (s)r  P  is the probability that the chain configuration lies between the 
continuous space curves (s)r  and (s)r  δ(s)r + . 

One need not worry about the fact that  
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because the normalization can be subsumed into a single differential for curve r(s),  
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gives the probability of the chain configuration (s)r  and is the well-known Wiener 
measure. 

 Equation (10) suggests that the distribution function for the discrete chain is: 
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Letting βW,u~ =  in the limit of a continuous chain, one obtains 
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Denote L);R (R,G ′  as the distribution of those chains that have Rr0 ′= and R.rn =  
Then: 
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It can be shown2 that L);R(R,G ′ satisfies the following diffusion equation for a 
particle in the external potential (R) u~ : 
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subject to the boundary condition that 
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It is worth noting that the analogy of the random flight model to the trajectory of a 
quantum mechanical particle starts here. Equation (23) is strongly reminiscent of the 
Schrodinger equation. The proof that Equation (22) is equivalent to Equation (23) involves 
the path integral formulation used by Feynman to show that the Hamiltonian version of non-
relativistic quantum mechanics is equivalent to the Lagrangian version. More on this 
analogy is given by Feynman and Hibbs2. 

Formulation of W 

As seen previously, W takes into account all the interactions other than chain 
connectivity. As mentioned earlier, for a single chain in solution, the following different 
interactions (or forces) must be considered: polymer-solvent interactions, osmotic 
interaction and polymer-polymer (short-range and long-range) interactions. 
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Only the long-range polymer-polymer interactions (excluded volume) was 
considered in Edwards’ work3. Consider a polymer chain with ‘n’ equivalent links, with 
some short-range repulsive interaction: 

 )r(rW W jiij −=  …(25) 
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This leads to: 
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, it can be shown that1, upon passage to the continuum 

limit, one obtains: 
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In an appendix, Freed1 showed that this can be equivalently represented as a 
hierarchy of equations. The hierarchy begins with: 
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where G3 is a “three-point Green’s function” and has an analogous equation for G3  
in terms of a four-point G4 etc. Note that for a continuous chain, the hierarchy never 
terminates. 

The self-consistent field (SCF) approximation of Edwards, deals away with this 
hierarchy. Instead of dealing with a G, which depends on G3, which in turn depends on G4  
and so forth, the SCF approximation states that we deal with a GSCF that obeys the diffusion 
equation: 
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where SCFu~  is some functional of SCFG and is called a self-consistent field. The 
notion of self-consistency was also introduced by Edwards. Since ),(Gu~u~ SCFSCFSCF = one 
can follow the Hartree procedure, where the form of SCFG is assumed, the pde solved to get a 
more accurate form of SCFG  and the procedure repeated. 

The Hong and Noolandi4 approach 

As mentioned before, Edwards3 considered only intramolecular potentials so that: 
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Hong and Noolandi4 consider a general intermolecular potential so that: 
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Using a method similar to that used in Edwards’ formal derivation1, Hong and 
Noolandi4 carefully show that the final SCF equations are of the form: 
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where pw is worked out to be: 
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where the kρ  are the microscopic particle densities, 
l

LZp =  and kμ Δ  is the 

deviation of the chemical potential of the component ‘k’ in an inhomogeneous system. 

The freely jointed chain and adsorption at the interface 

The logical next step would be to explore the behaviour of the random flight chain at 
interfaces or between two confining surfaces. de Gennes5 was the first to propose a boundary 
condition for adsorption of a random flight chain at a solid surface. Drawing upon the 
analogy of the case of a single, flexible chain, weakly bound to the adsorbing surface to the 
quantum mechanical case of the bound state of the deuteron, he suggested the following 
boundary condition: 

)T(k|
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where k (T) is a phenomenological constant that depends on temperature. 

Juvekar et al.6, have made three major contributions to the study of polymer 
adsorption:  

(i) They have introduced a ‘surface phase’ concept, which leads to the so-called 
“two-phase continuum model” explored in greater detail in Austine7,  

(ii) They have proposed a boundary condition for polymer adsorption; in this they 
have used the heuristic approach to the Edwards diffusion equation rather than 
the rigorous one outlined above, and  

(iii) They have proposed a finite-element-method based solution technique to solve 
the self-consistent random flight equations without invoking any further 
approximations such as the ground-state approximations8,9. Austine7 has used 
the “two-phase continuum model” for describing polymer chains confined 
between two parallel plates, polymers at air-water interface and adsorption of 
polymer chains with complex architecture.  
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Reason for success of the random flight model 

It is true that the random flight model incorporates the connectivity that distinguishes 
a macromolecule from a small molecule. Nonetheless, it completely ignores the precise 
details such as fixed valency angles and hindered rotation about the bonds. Thus, some 
authors have asserted that the random flight model is incapable of providing quantitative 
predictions about the behaviour of real polymer molecules but qualitative features may be 
explained (as mentioned in Napper10). The reason, why the random flight model has proved 
so popular stems from its simplicity. Casting the problem in a Schrodinger-wave-equation-
like formalism allows us to explore analogies with well-studied problems. This is an antidote 
to a prevailing tendency to apply extremely sophisticated mathematical procedures to really 
very primitive models for polymer chains10. Whether such sophisticated procedures merit 
any attention cannot yet be assessed objectively. An alternative approach suggested by 
Napper10 is to aim for a simpler mathematical description of more complex models of 
polymer chains. 

Evans11 and Evans and Needham12 have proposed a departure from the random  
flight model. As per this heuristic approach, one postulates that the total Helmholtz free 
energy of a system containing ‘n’ components (k = 1,…, n) with volume (surface) fraction 
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The chemical potential of component k in the interphase, ,εμ k
H
k − is the sum of a 

local contribution, ,μH
k evaluated as though the mixture were homogeneous at the local 

composition, plus a nonlocal contribution, ,εk−  arising from the spatial inhomogeneity. It is 
helpful to view kε−  as an “extra” potential energy field, which maintains the 
inhomogeneous density distribution of component k. Note that the equation also 
incorporates the constraints ∑ ∑ ==

k k
k

b
k 1φ1;φ  and with the assumption of a surface phase 

at z = * and the consequent constraint ∑ =
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The equilibrium condition is determined by minimizing the system’s free energy, i.e., 
by taking the variation:  

 0A δ =  …(36) 

This allows the evaluation of the nonhomogeneity parameter as – 
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where ‘s’ in the subscript refers to the solvent. Knowing ,εp the SCF potential pu can 

be evaluated as – 
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