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ABSTRACT 

Using theoretical formalism of F. Dalfovo et. al., condensate fraction of BEC (No/N) as a function 
of (T /Tc

o) were evaluated using non-interacting and interacting models for two different traps and 
compared with scaling parameter η. Our results indicate that two very different configuration can give rise 
to the same thermodynamic behavior of the condensate corresponding to the scaling parameter η. 

Key words: Bose-Einstein condensation, Condensate, Scaling parameter, Thermodynamic behavior, 
Interacting models. 

INTRODUCTION 

BEC was observed in remarkable series of experiments on vapor of rubidium, 
sodium2 and lithium3. In all these experiments, atoms were confined in magnetic traps and 
cooled down to extremely low temperature, of the order of fraction of micro Kelvin. The 
first evidence for condensation emerged from time of flight measurements. The atoms were 
left to expand· by switching off the confining trap and then imaged with optical method. A 
sharp peak in the velocity distribution was then observed below a certain critical temperature 
providing a clear signature of BEC. 

One of-the most relevant features of these trapped Bose gases is that they are 
inhomogeneous and finite sized systems. The number of atom ranges typically from few 
thousands to several million. In most cases, the confing traps are well approximated by 
harmonic potential. The trapping frequency ωho provides a characteristic length scale of the 
system as -  
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                                                               aho  = hmωho
⎛ ⎞
⎝ ⎠
           
          

1/2

 …(1)
 

which is in the order of few microns. There is a major difference between BEC of 
uniform Bose gas (like super fluid helium) and BEC of trapped gases. In the case of super 
fluid helium, the effect of inhomogeneity takes place on a microscopic scale fixed by the 
inter-atomic distance whereas in the case of trapped Bose gas, the size of the system is 
enlarged as an effect of repulsive two body forces. Therefore, the trapped gases can become 
almost macroscopic objects, directly measureable with optical methods. The fact that these 
gases are highly inhomogeneous has several important consequences. First BEC shown up 
not in the momentum space, as happens in super fluid helium, but also in coordinate space. 
This double possibility of investigating the effect of condensation is very interesting from 
both; the theoretical and experimental point of view. This provides novel methods of 
investigation for relevant quantities like the temperature dependence of the condensate, 
energy and density distribution, interference phenomenon, frequencies of collective 
excitations and so on4. 

Mathematical formulae used in the evaluation 

The condensate of non-interacting Bosons 

One starts with taking the confining potential in a quadratic form 

                                  Vext (r) = m
2

 (ωx
2x2 +ωx

2y2 + ωx
2z2) …(2) 

Here, one neglects the atom-atom interactions. The many-body Hamiltonian is the 
sum of single-particle Hamiltonians, whose Eigen values have the form. 

                                    εnznynz  = (nx + 1
2

)ћωx + (ny + 1
2

)ћωy + (nz + 1
2

)ћωz  …(3) 

Where {nx,ny,nz} are non-negative integers. The ground state φ (r1...rN) of N non-
interacting Bosons confined by the potential (2) is obtained by putting all the particles in the 
lowest single-particle state {nx = ny = nz = 0), namely φ (r1...rN) = Πi φo where φo (r) is given 
by - 

                          φo (r) = ⎛ ⎞
⎝ ⎠

        
        

3/4mω
π

ho

h
exp⎡

⎣
– (ωxx2 + ωyy2 + ωzz2)⎤

⎦  
…(4) 

One has introduced the geometric average of the oscillator frequencies : 



1238 R. Yadav et al.: An Evaluation of Condensate…. 

                                               ωho = (ωx ωy ωz)1/3  …(5) 

The density distribution then becomes n ( r−) = N⏐⏐φo( r−)⏐
2 and its value grows with 

N. The size of the cloud is independent of N and is fixed by the harmonic oscillator length : 

                                                aho = ⎛ ⎞
⎝ ⎠

        
        

1/2h
mωho

  …(6) 

which corresponds to the average width of the Gaussian in Eq. (3). 

Trapped Bosons at finite temperature (Thermodynamic limit)  

At temperature T, the total number of particle is given, in the grand canonical 
ensemble, by the sum - 

N = ∑
nx y z, ,n n

exp⎡ 
⎣ 
β (εnx ny nz – μ)⎤

⎦
 –1

–1  

…(7) 

while the total energy is given by - 

N = ∑
nx y z, ,n n

εnx ny nz exp⎡ 
⎣ 
β (εnx ny nz – μ)⎤

⎦
 –1

–1  

…(8) 

Where µ is the chemical potential and β = (Kβ T)-1. Below a given temperature, the 
population of the lowest state becomes macroscopic and this corresponds to the onset of 
Bose-Einstein condensation. 

The chemical potential is given by - 

                                                 μ → μc = 3
2  
ћω  …(9) 

Where ω = (ωx + ωy + ωz)/3 is the arithmetic average of the trapping frequencies. 
Inserting this value in the rest of the of the sum, one can write  

N – NO = ∑
nx y z  o, ,n n ≠

 
1

exp ( ) 1hβ ω ω ω −x x x y z zn + n + n  [ ]   
…(10) 

In order to evaluate this sum explicitly, one usually assumes that the level spacing 
becomes smaller and smaller, when N → ∞, so that the sum can be replaced by an integral -  
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N – No =  
d

n + n + n  hexp ( ) 1β ω ω ω −x x y y z z

n dn dnx y z

[ ]
⌠
⌡o

∞

 
 …(11) 

This assumption corresponds to a semi-classical description of the excited states. Its 
validity implies that the relevant excitation energies, contributing to the sum (10) are much 
larger than the level spacing fixed by the oscillator frequencies. The accuracy of the semi-
classical approximation (11) is expected to be good, if the number of trapped atoms is large 
and Kβ T » ћωho. 

The integral (11) can be easily calculated by changing variables βћωxnx = nx
−  etc.). 

One finds - 

                                             N – No = ξ(3)⎛ ⎞
⎝ ⎠

        
        

3K TB

hωho
  …(12) 

Where ξ(n) is the Riemann ξ function and ωho is the geometric average (5). From 
this result, one can also obtain the transition temperature for Bose-Einstein condensation by 
imposing that No → 0 at the transition, one gets - 

                                   KBT = ћωho 
N
(3)ξ

 = 0.94 ћωhoN1/3  …(13) 

For temperatures higher than Tc
o, the chemical potential is less than μc and becomes 

N dependent, while the population of the lowest state is of the order 1 instead of N. The 
proper thermodynamic limit for these systems is obtained by letting N → ∞  and ωho → ∞, 
while keeping the product Nω3

ho constant. With this definition, the transition temperature 
(13) is well defined in the thermodynamic limit. Inserting the above expression for Tc

o into 
Eq. (12) and (13), one gets the T dependence of the condensate fraction for T < Tc

o   

                                                
No

N  
= 1 – T

Tc
o  …(14) 

The same result can be also obtained by rewriting Eq. (11) as an integral over the 
energy, in the form - 

                                           N – No  =  
ρ d(

( ) 1ε −xp  
ε ε
βε
) ⌠

⌡o

∞

 …(15) 

Putting density of state - 



1240 R. Yadav et al.: An Evaluation of Condensate…. 

                                              ρ(ε) = 1
2  

(ћωho)–3ε2  

From eqn. (15), we have 

N – No  =  
(

1e   −

hω ε εho)−3 2

βε

d⌠
⌡o

∞
1
2  

=  1
( )hωho

3 
ε ε2

βε

d
e  −1

⌠
⌡
o

∞
1
2

 

=  1
( )hωho

3 
1

3β  
y2 y

y
d

e  −1
⌠
⌡
o

∞
1
2

 (y = βε) 

We have - 

y2 y
y
d

e  −1
⌠
⌡
o

∞

 
= Г (3) ξ (3) = 2ξ (3) 

N – No  = 
1
2

⎛ ⎞
⎝ ⎠
         
         

3K Tβ

hωho
 2ξ (3) 

= ξ (3) ⎛ ⎞
⎝ ⎠
         
         

3K Tβ

hωho
 

which is the same as that of equation (12). 

On plotting condensate function (No/N) as a function of (T/ Tc
o), it was found that 

agreement with experimental result5 is very poor. Then two corrections were made in order 
to match the result with the experiment. One is finite size effect and other is role of 
dimensionality. 

The finite size correction to the equation (14) for the condensate fraction can be 
evaluated analytically by studying the large N-limit6-13. The result for (N0 (T)/N) is given by - 

                             
No

N
T
Tc

o
T
Tc

o
3 (2)ϖξ

2 [ (3)]ω ξho 
2/3= 1  −        −  N–1/3  …(16) 

The result is shown in Table T1. To the lowest order, finite size effect decrease as 
N-l/3 and depend on the ratio of the arithmetic mean ϖ and geometric (ωho) average of the 
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oscillator frequency. For axially symmetric traps, the ratio depends on the deformation 
parameter 

λ = ωz/ωl asϖ/ωho = (λ + 2)/3λ1/3) 

Interacting model 

As we know that the effects of two body interactions in dilute Bose gas is expected 
to be significant in the presence of condensate. In this presence of attraction forces, there is 
narrowing of the peak in the center of the trap and also increase of peak density, one namely 
discuss the system composed of large number of particles interacting "with repulsive forces. 

In the presence of repulsive force, the chemical potential provides an important scale 
of energy lying between oscillator energy and the critical temperature ћωho < μ < KβTc

o. One 
defines a very useful parameter η, which is the ratio - 

                                           η = 
μ

KβTc
o  = α ⎛ ⎞

⎝ ⎠
           
          

2/5a
hoaN1/6  …(17) 

This is ratio between the chemical potential calculated at T = 0 in TF approximation 
and the critical temperature for non-interacting particle in the same trap. 

α = 
(15)  [ (3)]2/5 1/3ξ

2
 ≅ 1.57 

α is a numerical coefficient (N a/aho) accounts for the effects of two body interactions. If one 
uses the typical values of the parameters of the current experiments, one finds that η ranges 
from 0.35 to 0.40. Thus, one expects that there is an interaction effects of Tc

o. Using the 
semi-classical results14, one can calculate the number of atoms out of the condensate. 

NT = 
[      + V  (r)  ]eff − μ

  K Tβ

p
2m

2

−1
⎡
⎢
⎣

⎤
⎥
⎦

−1

drdp
(2π   h)3

⌠
⌡

exp  …(18) 

Using the Thomas-Fermi approximation for the effective mean field potential, one 
can obtain the result14 - 

No

N
ξ(2)
ξ(3)

= 1  − t3 −  ηt2 (1 – t3)2/5 …(19) 

This equation is valid to lowest order in the interaction parameter η. t is the reduced 



1242 R. Yadav et al.: An Evaluation of Condensate…. 

temperature t = (T / Tc
o). 

RESULTS AND DISCUSSION  

In this paper, we have evaluated the condensate fraction (No/N) as a function of 
(T/Tc

o) using the theoretical formalism developed by F Dalfovo et al.14 In Tables 1 and 2, we 
have shown the condensate fraction (No/N) for interacting and non- interacting particles in 
the different traps. For interacting model, we have taken the self-consistent mean field 
calculation within Popov approximation for N = 5×104 rubidium atoms in a trap with a/aho = 
5 × 10-3 and λ = √8. For N = 5 × 107, sodium atoms in a trap with the value of a/aho = 5 × 10-3 
and λ = 0.05. The numerical results were compared with the prediction of scaling theory for 
η = 0.4. The above calculation indicates (in an explicit way), how very different 
configuration can given rise to the same thermodynamic behavior, if the corresponding 
scaling parameter η is the same. It is also interesting to notice that the scaling behavior is 
reached faster in the presence of two body interactions than for non-interacting particles. 

Table 1: Evaluated result of condensate fraction (No/N) as a function of (T/Tc
o) for inter-

acting and non-interacting particles for Rb atoms N = 5 × 104, a/aho = 5.4 × 10-3 
λ = √8, η = 0.4 

(No/N) 
(T / Tc

o) 
Interacting Non-Interacting 

0.1 
0.2 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 

0.787 
0.924 
0.896 
0.824 
0.745 
0.692 
0.612 
0.554 
0.526 
0.497 
0.432 
0.386 
0.339 
0.268 

0.968 
0.942 
0.905 
0.832 
0.738 
0.674 
0.625 
0.567 
0.567 
0.506 
0.414 
0.408 
0.367 
0.318 
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Table 2: Evaluated result of condensate fraction (No/N) as a function of (T/Tc
o)         

for interacting and non-interacting particles for sodium atom N = 5 × 107, 
a/aho = 1.7 ×10-3, λ = 0.05, η = 0.4 

(No/N) 
(T / Tc

o) 
Interacting Non-Interacting 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.95 
1.0 

0.992 
0.956 
0.897 
0.824 
0.786 
0.697 
0.547 
0.512 
0.467 
0.418 
0.359 

0.982 
0.946 
0.875 
0.806 
0.765 
0.669 
0.525 
0.452 
0.408 
0.382 
0.339 

In Table 3, we have given the evaluated result of the condensate fraction as a 
function of (T / Tc

o) for axially symmetric trap using equation (16) and then the obtained 
result is compared with equation (14). The condensate fraction obtained in this way, turns 
out to be smaller than the thermodynamic limit prediction of equation (14). It appears that 
finite N makes the system potentially richer, because new interesting regimes can be 
explored even in case, where there is no real phase transition in the thermodynamic regime. 
With the numerical calculation, Ketterle and Van Druten11 found that finite size effects are 
significant only for small values of N less than about 104. 

In Table 4, we have shown the evaluated result of condensate fraction (No/N) as a 
function of t (= T / Tc

o) for various values of η (a) η = 0.4, (b) η = 0.6 and (c) η = 0 (non-
interacting). Results were compared with (d) Monte Carlo calculation by Kranth16 and 
experimental data by Ensher et al5. The Monte Carlo simulation has been done with 10,000 
atoms interacting through an hard core potential. Monte Carlo result corresponds to η = 0.35. 
The experimental data corresponds to the η ranges from 0.39 - 0.45. Monte Carlo result is 
very much near to mean field prediction of η equal to 0.4. A detailed comparison between 
Monte Carlo results and mean filed theory has been performed by Holzmann, Krauth and 



1244 R. Yadav et al.: An Evaluation of Condensate…. 

Maraschewski including the analysis of the density profiles of the gas at different 
temperatures17. Recent calculations18-20 also confirm the same behavior. 

Table 3: Evaluated result of condensate fraction (No/N) as a function of (T/Tc
o) for 

axially symmetric traps using equation (16). The results were compared with 
equation (14) 

(No/N) 
(T / Tc

o) Using eq. (16) taking finite 
size effect 

Using eq. (14) without finite 
size effect 

0.1 
0.2 
0.3 
0.4 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 

0.967 
0.942 
0.918 
0.894 
0.813 
0.753 
0.719 
0.627 
0.584 
0.548 
0.502 
0.343 
0.309 
0.228 
0.182 

0.982 
0.956 
0.942 
0.908 
0.832 
0.765 
0.735 
0.644 
0.622 
0.608 
0.554 
0.468 
0.365 
0.242 
0.204 

Table 4: Evaluated result of condensate fraction (No/N) as a function of (T/Tc
o) for 

various values of η (a) η = 0, (b) η = 0.4, (c) η = 0.6 and (d) Monte Carlo 
result (e) Experimental results 

(No/N) 
(T / Tc

o) 
η = 0 η = 0.4 η = 0.6 Monte carlo 

results Expt. results 

0.1 0.995 0.942 0.922 0.953 0.939 

Cont… 
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(N0/N) 
(T / Tc

0) 
η = 0 η = 0.4 η = 0.6 Monte carlo 

results Expt. results 

0.2 
0.3 
0.4 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 

0.976 
0.942 
0.896 
0.853 
0.832 
0.816 
0.802 
0.786 
0.769 
0.705 
0.682 
0.605 
0.538 
0.233 

0.910 
0.886 
0.823 
0.785 
0.712 
0.695 
0.638 
0.602 
0.556 
0.514 
0.448 
0.366 
0.298 
0.124 

0.894 
0.856 
0.796 
0.763 
0.709 
0.675 
0.612 
0.588 
0.543 
0.496 
0.428 
0.343 
0.277 
0.116 

0.922 
0.896 
0.834 
0.792 
0.724 
0.708 
0.644 
0.616 
0.569 
0.526 
0.455 
0.375 
0.302 
0.133 

0.916 
0.890 
0.842 
0.788 
0.709 
0.686 
0.642 
0.619 
0.573 
0.532 
0.431 
0.374 
0.308 
0.122 
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