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ABSTRACT 

 In this paper, we have studied the one-dimensional Fermi gas with attractive δ interaction 
potential in the quasi-particle random phase approximation at zero temperature. Using the theoretical 
formalism of Alm and Schuck, we have studied the behavior of collective modes over the whole coupling 
regime from weak coupling (high density) to strong coupling (low density). We observe that in the weak-
coupling limit particle-hole RPA is approached to low momenta and the collective mode in the strong 
coupling limit reproduces the Bogoliubov mode for the weakly interacting bosons. 

Key words: Collective mode, Quasi particle, Random phase approximation particle-hole RAP, 
Bogoliubov mode.   

INTRODUCTION 

The one dimensional Fermi gas with attractive δ interaction among the fermions has 
been used as a model to know the physical properties of realistic Fermi system. The exact 
solution for its ground state energy is known from the Bathe ansatz1, therefore one can test 
approximate solutions of the systems. Quick, Esbagg and deLalno2 have developed mean 
field approximation basically of two types (a) plane wave Hartre-Fock (HF) (b) non-plane 
wave (HF) and BCS. It was found that the BCS solution can describe the cross-over between 
weak coupling (as a weakly interacting gas of fermions) and strong coupling (gas of bosonic 
two particle pairs) in the system. In particular, they find that the BCS solution for the ground 
state energy coincides with the exact solution in both weak and strong coupling. In this sense, 
the system may serve as a simple model to study the transition between weak and strong 
coupling superconductivity in 1D Fermi system. This transition between weak and strong 
coupling has been discovered by Leggett3 and by Noziers and Schmitt Rink4 in three 
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dimensions. The simple form of the interaction allows one to carry out approximation 
beyond the mean-field level such as ordinary random phase approximation (RPA's) or 
generalized RPA's in controlled fashion. In this approximation, one is able to calculate 
contribution to the ground state energy of the system beyond the mean field ground state 
energy. Williams and Bloch5 have discussed the ordinary (particle hole) RPA for the one 
dimensional electron gas. The same approach was also applied by Bernner and Haug6. 
Friesen and Bergersen7 have applied Singwi Sjolander generalization of RPA8 to the ID 
electron gas. This model can serve as an initial approximation to realistic systems such as 
quasi one dimensional metal9.  

In this paper, using the theoretical formalism of T. Alm and P. Schuck10, we have 
studied the collective modes of the one dimensional Fermi gas within the quasi particle 
random phase approximation (RPA). One calculates the collective excitations for the 1D 
attractive Fermi gas with a δ interaction at T = 0 by applying the quasi particle RPA. One 
obtains quasi particle RPA equation for the two quasi particle propagator starting from the 
Bogoliubov transformed Hamiltonian of the system using the equation of motion for the two 
particle Green's function. The homogeneous two particle equation yields the condition for 
the collective excitation in the system. It coincides with result found by Anderson11, 
Rickayzen12, Bardasis and Schrieffer13 and othersl4,15 by the equation of motion method. 

Mathematical formulae used in the study 

One writes the Hamiltonian for one dimensional Fermi gas in second quantization. 
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where ki denote momentum and spin quantum number of the particle and 〈 〉k k V K K1 2 3 4| |  is 
the anti-symmetrized matrix element of the two body interaction. Using Bogoliubov 
transformation of the creation and annihilation operators Hamiltonian (1) is transformed into 
a new form. The transformed Hamiltonian is derived by several author16-18, The transformed 
Hamiltonian is written in the following form 
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In equation (2), Ho is the BCS ground state energy and H11 is the diagonal part, H20 
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is the off-diagonal part of the Hamiltonian. If one demand that the off-diagonal part H20 
vanishes then one obtains the well known relations of BCS gap equation19. 

The H31 term in the Hamiltonian in eqn (2) does not contribute to the RPA equations. 
The other terms H40 and H22 in the Hamiltonian describe the residual interaction among the 
quasi particle. 

These terms are neglected in the model BCS approximation. Therefore in order to go 
beyond the BCS mean field approximation one has to include the residual interaction among 
the quasi particle. 

Now, one can treat the quasi particle within the generalized RPA approximation. For 
this, one introduces two particles Green's function with respect to quasi particle basis and 
derive the equation of motion for the Green's function G. The equation has the form of 
Dyson equation20 for the two particle propagator matrix G. The static elements of the mass 
operator A and B are given by the double commutation21. 

, ,
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Here 〈 〉 refers to averaging with respect to the BCS ground state. But in place of 
BCS ground state one has correlated ground state which corresponds to a generalized quasi 
particle RPA22. 

Taking δ interaction one solves the system equation in the ω representation. One 
obtains coupling equation for G11 and G21 also for G22 and G21. One obtains, 
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Where 

Ek,q = Ek + Ek+q 



Int. J. Chem. Sci.: 9(3), 2011 999 

We have assumed that collective pairs have zero total spin. One arrives on the 
expressions 
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The quantities Z, Λ and Γ are given by the equations - 
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The quantities m(k,q), n(k,q) and l(k,q) are combination of uk and vk and is given by - 
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Multiplying in equation (7) subsequently with m with n and in equation (7) with l  
and summing over k, one arrives at the system of equation for the quantities Z, Λ and Γ  
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The quantity Ia b c are in the notation 

I
a (k q)b (k q)c (k q)

Ea b c
k qk

, ,
,

, , ,
=

−
∑ ( )ω            2 2

  …(11) 

Here a(k,q) = [Ek,qω] and b(k,q), c(k,q) = [n(k,q), l(k,q), m(k,q)]. This is a linear in 
homogenous system of equation for the quantities Λ, Γ and Z. This can be solved with the 
help of matrix inversion. Equation (10) is a eigen value problem for the determination of the 
collective modes in the quasi particle RPA. The condition for the nontrivial solution is the 
vanishing of determinant. 
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where Ω (q) denotes the eigen value for the collective excitation.  

Weak coupling case 

The analysis of the weak coupling case has been given by Belkker and Randeria23. 
One quotes their result for the weak coupling collective made in one dimension. 
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Where the density of states in one dimension for parabolic dispersion was used. The 
long wavelength collective modes in the weak coupling case have a phonon like spectrum 
and are independent of the gap. If one compares equation (13) with the small-q expansion of 
the collective modes in the particle hole RPA, one finds that both coincides. This means that 
in weak coupling the behavior of collective modes for small q is not changed from the 
normal particle hole RPA. 

However, for large q and in particular near the point q = 2kF the quasi-particle differs 
from the particle hole RPA. 

Strong coupling limit 

Now, from equation (12) one can expand the determinant of the collective modes for 
small -q and - Ω limit with respect to small gap. In the strong coupling limit the gap goes to 
zero with density.2 One expands the gap equation in terms of Δ2  
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Here one has introduced integral Ji. It has been evaluated for the strong coupling 
limit i.e. for μ* < O. Here μ* is effective chemical potential including the quasi particle shift 

J dk
k
m

i i= =

+

1

2

2

μ*0

∞

⌠
⌡  …(15a) 

J dk
k
m

i2 i= =

+

1

2

2

μ*0

∞

⌠
⌡

  …(15b) 

Then 

J m1
1 2 1 2

 2= π μ/ *

 



1002 S. Raman and L. K. Mishra: An Evaluation of Collective…. 

J m2
1 2 3 2
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Now in equation (14) the integral in the first line is convergent for a contact 
interaction without a cutoff due to the one dimensionality of the system. An analogous 
expansion of the BCS density equation yields. 
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2
2
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Now, the effective chemical potential can be expressed in terms of the density and 
the coupling strength as - 

(μ*)1 2 1 2 22
8

2
64

3
8

= ± −m v mv nv   …(17) 

In the limit of zero density or zero gap, respectively equation (17) yields the 
condition. 

2
4

2

0μ * = =
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This shows that in the extreme strong coupling limit the chemical potential i.e. the 
energy to remove a particle from the system in just half the two particle binding energy -EO 
in the Vacuum.2 

The long wavelength dispersion relation in the strong coupling limit is given by 

Ω ( )q cq=   …(19a) 

where the sound velocity c depends on the gap Δ. Now using the low density 
expansion of the BCS density (16) to substitute Δ2 by the density n, one obtain the 
expression for the collective modes in the strong coupling limit. 
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Introducing the pair mass mB = 2m and the pair density nB = n/2 the above 
expression reduces to 
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Equation 19(c) is the well known Bogoliubov dispersion relation for the weakly 
interacting Bose gas24,25 in the limit of small q which is linear in q i.e. phonon like. Thus 
starting from interacting fermions with an attractive interaction the quasi particle RPA in the 
strong coupling limit yields the dispersion relation for weakly interesting gas of bosons (two 
particle bound states). The magnitude of the repulsive interaction among the bosons in 
equation 19(c) is given by the fermionic interaction strength v and is consistent with the 
result of Hanssmann26 and others.27-32 

RESULTS AND DISCUSSION 

In this paper, using the theoretical formalism of T. Alm and P. Schuck10, we have 
studied the behavior of collective modes over the coupling regime weak coupling (high 
density) to strong coupling (low density). We observe that the treatment of the residual 
interaction in the Hamiltonian (2) within the quasi particle or generalized RPA allows one to 
study the behavior of the collective over the whole coupling range. Collective modes in one 
dimension were found for the case of an attractive δ interaction. One observes that in the 
weak coupling limit one recovers Anderson's results11 whereas in the strong coupling limit 
the Bogoliubov dispersion relation24 for the interacting Bose gas of two particle pairs can be 
derived from the quasi particle RPA. This is consistent with the fact that the BCS theory is 
capable of describing the extreme strong coupling limit i.e. the gas of two particle bound 
state properly and reproduces the exact result for the ground state energy in this limit.2 In 
Table 1 we have presented for small momenta q in the weak coupling limit (μ* = 3.386 Eo). 

Table 1: An Evauated results of collective mode Ω for small momenta q in the weak 
coupling limit (μ*= 3.386 E0) the numerical solution is compared with weak 
coupling expansion (13). 

Ω/μ 
q/kF 

Numerical  solution equation (12) Weak coupling expansion eq. (13) 

0 
0.1 
0.2 
0.3 

0.00 
0.126 
0.268 
0.355 

0.00 
0.132 
0.275 
0.368 

Cont… 
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Ω/μ 
q/kF 

Numerical  solution equation (12) Weak coupling expansion eq. (13) 

0.4 
0.5 
0.6 
0.65 
0.70 
0.75 
0.80 

0.568 
0.573 
0.626 
0.645 
0.689 
0.735 
0.794 

0.599 
0.702 
0.925 
1.027 
1.146 
1.207 
1.258 

The numerical solution equation (12) is compared with weak coupling expansion 
equation (13). Both solution coincides at q/kF = 0.4. This shows the consistency of the 
numerical solution with the well known weak coupling result which was obtained by 
Anderson11 in the 3D case. In Table 2, we have presented the evaluated results of collective 
mode Ω for small momentum q in the strong coupling case (μ* = (-) 0.4966 E0)' The 
numerical solution equation (12) is compared with the strong coupling expansion (equation 
19c) and also with free particle dispersion Ω = q2/2mB. We observe that the numerical 
solution starts linearly in q and is consistent with the strong coupling expansion gives in 
equation 19(c). This confirms the interpretation of the collective excitations in the strong 
coupling limit as Bogoliubov sound modes of the two particle Bose gas that is formed in the 
limit. The free particle solution reached the full solution for large q.  

Table 2: An Evauated results of collective mode Ω for small momenta q in the strong 
coupling limit (μ*= (-) 0.4966 E0) The numerical solution [eq. (12)] is 
compared to the strong coupling expansion [eq. (19c)] and free particle 
dispersion Ω = q2/2mB (a0 = Bohr radius) 

Ω/Εο 
q/a0 Numerical 

solution eq. (12) 
Strong expansion 

eq. (19c) 
Free particle dispersion   

Ω = q2/2mB 

0 
0.02 
0.04 

0.000 
0.0022 
0.0032 

0.000 
0.0020 
0.0032 

0.000 
0.0002 
0.0004 

Cont… 
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Ω/Εο 
q/a0 Numerical 

solution eq. (12) 
Strong expansion 

eq. (19c) 
Free particle dispersion  

Ω = q2/2mB 

0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.11 
0.12 
0.15 
0.20 

0.0034 
0.0037 
0.0038 
0.0042 
0.0048 
0.0052 
0.0056 
0.0062 
0.0094 
0.0126 

0.0035 
0.00355 
0.00362 
0.00375 
0.00382 
0.00397 
0.00416 
0.00438 
0.00469 
0.00525 

0.0005 
0.00282 
0.00294 
0.00307 
0.00322 
0.00375 
0.00400 
0.00425 
0.00473 
0.00098 
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