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ABSTRACT 

Using hybrid variational model and Gaussian variational model, chemical potential μ in the unit 
of ħωz for quasi two-dimensional condensate in an anisotropic traps have been evaluated. Our results for 
both models are very similar in magnitude and trends. Our evaluated results are also in good agreement 
with other theoretical workers. 
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INTRODUCTION 

Bose-Einstein condensation of dilute atomic gases has been achieved in a variety of 
magnetic and optical dipole force traps with different geometries. There is a considerable 
interest in studying the properties of these ultracold gases under conditions where the 
confinement gives a system dimensionality less than 3. Recent experiment in optical lattices 
have observed the properties of a one-dimensional Tonks gas in which bosons show 
fermionic properties1,2. Many other experiments : phase coherence between lattice wells 
were observed3,4, collective excitations of a one-dimensional gas were studied and three –
body recombination rates in a correlated  1D degenerate Bose gas were measured5. All these 
experiments were carried out with many individual condensates in a lattice of tightly 
confining potential tubes formed at the inter-section of two optical standing waves. 
Tunneling between individual wells was controlled through the beam intensities. A single 
optical potential well was used to confine a mixture of BEC and Fermi gas where the BEC 
was found to have a one-dimensional character. 
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Other experiments used a one-dimensional lattice of BECs formed by a single 
standing wave. Each individual condensate was confined to an extreme pancake shaped 
potential well and had quasi-two-dimensional properties; the tunneling between the well 
could be controlled by adjusting the intensity of the standing wave ,an oscillating current in 
an array of Josephson junctions was studied7, number-squeezed states were created8 and 
interference between independent condensates was observed9. Two-dimensional Bose-
condensates in a single potential were studied10-12. However, the new physics in this regime 
remains to be explored. A two-dimensional Bose gas in a homogenous potential does not 
undergo Bose-Einstein condensation (BEC). Instead there is a Berenzinskii-Kosterlitz-
Thouless transition, which is a topological phase transition mediated by the spontaneous 
formation of vortex pairs. It is a system which is super fluid even though it does not possess 
long-range order. This is the usual picture of super-fluidity in three dimensions explained in 
terms of a macroscopic wave function describing the whole system. A recent theoretical 
paper13 discussed the dependence of the condensate coherence length on temperature. It 
shows that even at low temperature, at a fraction of critical temperature, the coherence 
length is much smaller than the condensate size due to strong phase fluctuations. Early 
experiments on the KT-transition were carried out with films of super fluid4 He and more 
recent ones include the observation of quasi condensates in thin layers of spin polarized 
hydrogen14-16. 

In this paper, we have evaluated the chemical potential of quasi two-dimensional 
condensate in an anisotropic traps by using two models namely hybrid variational model and 

Gaussian vibrational model. The results for chemical potential ⎟
⎠
⎞

⎜
⎝
⎛

zω
μ
h

 as a function of radial 

frequency ωr (Hz) for these two models are very similar for ωr = 5 to 50 Hz both in 
magnitude and trend. 

Mathematical formulae used in the calculation 

Condensates are usually trapped in harmonic potentials given by – 

 
2 2 2

02ext i i i
mV xω λ= Σ  …(1) 

where the λi(t) denote the trap anisotropies which can in general depend on time. A 
quasi-two-dimensional trap has λz >> λxy. For large anisotropies the condensate shape along 
the z direction is very similar to the Gaussian profile of an ideal gas. However, along the 
weakly confined x and y axes the condensate has parabolic shape characterstic of the 



Int. J. Chem. Sci.: 11(3), 2013 1533

hydrodynamic regime. The best description in terms of simple analytical functions is 
therefore to model the condensate wave function as a hybrid of parabola and Gaussian. 
Experiments on the condensate expansion in various regimes show the smooth crossover 
from hydrodynamic expansion to the characteristics of a quasi-two-dimensional gas, which 
essentially expands like an ideal non-interacting gas. To determine the dynamics of the 
quasi-two-dimensional condensate, we use a variational method17 and define the trail wave 
function – 

 nAψ =
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Where the normalization constant An is given by – 
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The condensate width li(t) and phase βi(t) parameters are functions of time and their 
time evaluation completely describe that of the condensate. The condensate profile is at all 
time restricted to a parabolic shape in the radial plane and a Gaussian shape along the highly 
compressed axial direction. The Lagrangian density for the nonlinear Schrodinger equation 
is given by – 
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With the nonlinearity parameter
24 ag

m
π

=
h , where a is the scattering length, N is the 

number of atoms in the condensate and m is the atomic mass. After inserting the trial wave 
function (2) into Equation (4) the corresponding Lagrangian is found through integration          
L = αd3; the four terms of Eq. (4) lead to – 

L = L1 + L2 + L3 + L4 
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Where, we have obtained the ‘quantum pressure’ term18 for the x and y directions 
(where this term is divergent due to the sharp boundaries of the condensate wave function in 
the hydrodynamic regime) but retained it for the z direction where the condensate assumes 

the Gaussian shape of an ideal non-interacting gas (as the term proportional to 2
1
zl

). The 

quantum pressure term is crucial in describing the dynamics. The total energy per particle 
Etot and the chemical potential μ are given by – 

 Etot = Ekin+ Epot+ Eint ,   μ= Ekin+ Epot+ Eint  …(6) 

where Ekin, Epot and Eint are the kinetic, potential and interaction energy given in the 
last term of the Lagrangian (5), respectively. The Euler Lagrange equations – 
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Yield the dynamic equation for the condensate width li and phase βi. We find for the 
widths – 
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After differentiating Eqs. (8) with respect to time, one can express the resulting 
equation in terms of the li alone – 
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Where δiz – 1 for I = z and 0 otherwise. It is convenient to express the above 
equation in dimensionless quantities, so one introduces dimensionless time τ and width di 

defined by – 

 0
0

,i
i

ld t
a

τ ω= =  …(10) 



Int. J. Chem. Sci.: 11(3), 2013 1535

where 0
0( )a mω= h  is the harmonic oscillator length. In terms of quantities             

Eq. (9) can be rewritten as – 

 2
3
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where the constant  
0

28 ( )p
aC N
aπ= . To find ground state of Eqs. (11) one has to 

set the left side equal to zero and solve the remaining coupled nonlinear equations : 
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This cannot be done analytically, but it is straightforward to find a numerical 
solution. The λio = λi (0), i = x, y, z are defined as trap anisotropies at time t = 0 when the 
condensate is in the ground state. The di0 = di (0) are the ground state solution of Eq. (11), i.e. 
the solutions for the condensate widths di when the time derivative is set to zero. 

After some algebra and using various symmetries the three coupled equations can be 
reduced to one polynomial equation. Introducing new dimensionless units Di, defined as the 
ground state condensate widths li0 normalized by the axial harmonic oscillator length az, ie., 
Di = li0/az, the poly-nomial equation can be written as – 
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Where Dz = γ2. There is only one real and positive solution to this equation. For the x 
and y widths, we find – 
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Now, one examines the case where the anisotropy becomes very large. A solution to 
Eq. (13) is then given by neglecting the first term on the R.H.S. and solving the remaining 
equation. We find that γ2 = Dz = 1 and thus the approximate solution is given by the axial 
harmonic oscillator length. 
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It is the minimum width the condensate shape can attain and it is also the solution for 
the width of a non interacting gas. For this reason the gas along the Z direction is said to 
have the characteristics of an ideal non interacting gas. One will see that this also applies to 
the expansion and the collective excitation of the gas which become identical to those of the 
ideal gas in the limit of large anisotropies. 

It is interesting to examine the range of validity of this approximation and find an 
estimate of the error. Demanding that the first term on the R. H. S. of Eq. (13) is much 
smaller than the second, one sees that the error of the deviation from the ideal gas solution 

scales with the relation of .zo2
3

yoxo /λλλ N  The 2D regime can be reached by either decreasing 
the number or increasing the axial frequency. Now, one can calculates the chemical potential 
from Eq. (6) and the terms of the Lagrangian (5) and obtain after some algebra – 

 2 21 ,
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z
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h
 …(16) 

Where one has used 2 2 2 2
xo xo yo yoI Iω ω= , The expression for Izo (Eq. (15)) and other 

symmetries of Eq. (12). One finds that the relation Iio = ,2
2

imω
μ  I = x, y is similar to that 

of a hydrodynamic gas19 only that for the quasi-two-dimensional gas one uses the chemical 

potential shifted by an amount 2
ωzh  to calculate the radial width. Inserting solution (15) for 

the axial width into Eq. (14) one obtains explicit expressions for the radial width – 
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and after substituting into Eq. (16) one obtains for the chemical potential – 
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Here a is the Bohr radius. This expression shows that the chemical potential tends 

towards 2
zωh , the harmonic oscillator ground state energy, which is the energy per particle 
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and also the chemical potential of the ideal non-interacting gas. The deviation from this 
value is small for a quasi-two-dimensional gas, and interestingly, given by the same value as 
the correction to the axial condensate width of Eq. (13). It is proportional to the square of the 
radial condensate width would also be zero which is neither possible nor self-consistent. The 
expression for Q2D chemical potential should be compared to that of 3D hydrodynamic gas 
μ3D for which one obtains19 from after some rearrangements. 
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One observed that this expression tends towards zero for N → 0 and the power law 
is also different from the Q2D expression (18). Similarly one can impose the condition 

zμ ωp h  on the expression of the Q2D chemical potential in Eq. (18) and one finds for the 
maximum number of atoms to achieve 2D for a given trap geometry. 
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Where the constant 3
32
225 D zC for andμ ω= p h

256 zC forπ μ ω= p h . 

RESULTS AND DISCUSSION 

In this paper, we have evaluated the chemical potential of quasi-two-dimensional 
condensate in anisotropic traps. The evaluation has been performed using the theoretical 
model developed by Hechenblaikner et al.21 The Chemical potentials were calculated for two 
different models one is Hybrid variational model and other is Gaussian variational model as 
a function of increasing radial trap frequency ωr. The axial frequency remains constant at 

z
c KH2.22π

ω  = and the number of atoms is taken to be N = 8 x 104. Our theoretically 

evaluated results show that chemical potential increases with radial frequency ωr. For very 

small values of ωr the anisotropy A ⎟
⎠
⎞⎜

⎝
⎛

x
z
λ

λ  is very high and the chemical potential 

approaches μ ≈ 2
zωh . Gradually increasing the radial trap frequency the anisotropy has been 

reduced and chemical potential increases. The results are shown in Table 1. 
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Table 1: Evaluated results of chemical potential 
zω

μ
h (in the unit of ħωz) as a function 

of radial trap frequency. The calculation is done with the help of (a) Hybrid 
variational model (b) Gaussian variational model 

Chemical Potential μ (in the unit of ħωz) 
Radial frequency ωr (Hz) 

(a) (b) 

5 0.52 0.55 

10 0.58 0.63 

15 0.65 0.69 

20 0.68 0.73 

25 0.72 0.75 

30 0.74 0.80 

32 0.82 0.85 

34 0.86 0.88 

36 0.87 0.94 

38 0.92 0.98 

40 0.95 1.02 

45 1.08 1.10 

50 1.12 1.15 

In (a), we have shown the result of variational hybrid model and in (b) we have 
shown the results of Gaussian variational model. In Gaussian variational model20,21, the trial 
wave function taken in all spatial direction is Gaussian. The results along with the trends of 
both the models are the same. Some recent calculations22-25 also reveals the same facts. 

REFERENCES 

1. B. Paredes, A. Windera, V. Murg, O. Mandel, S. Folling, I. Cirac, G. Shlyapnikov, T. 
Hansch and I. Bloch , Nature (London), 429, 277 (2004). 

2. T. Kinoshita, T. Wenger and D. S. Weiss, Science, 305, 1125 (2004). 

3. M. Greiner, I. Bloch, O. Mandel, T. W. Hansch and T. Esslinger, Phys. Rev. Lett. 
(PRL), 87, 160405 (2001). 



Int. J. Chem. Sci.: 11(3), 2013 1539

4. H. Moritz, T. Stferle, M. Kohl and T. Esslinger, Phys. Rev. Lett. (PRL), 91, 250402 
(2003). 

5. B.L. Tolra, K. M. O’Hara, J. H. Kuckans, W. D. Phillips, S. L. Rolston and J. V. 
Porto, Phys. Rev. Lett. (PRL), 92, 190401 (2004). 

6. F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles and C. 
Salomon, Phys. Rev. Lett. (PRL), 87, 080403 (2001). 

7. F. S. Cataliotti, S. Burger, C. Fort, F. Minardi, A. Trombettoni, A. Smerzi and M. 
Inguscio, Science, 293, 843 (2001). 

8. C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda and M. A. Kasevich, Science 
291, 2386 (2001). 

9. Z. Hadzibabic, S. Stock, B. Battelier, V. Bretin and J. Dailbard, Phys. Rev. Lett. 
(PRL), 93, 180403 (2004). 

10. A. Gorlitz, A.L. Safonow, S. Stringari, H. Michinel and P. Zoller, Phys. Rev. Lett. 
(PRL), 87, 130402 (2001). 

11. D. Rychtarik, B. Engeser, H. C. Nageri and R. Grimm, Phys. Rev. Lett. (PRL), 92, 
173003 (2004). 

12. N. L. Smith, W. Heathcote, G. Hechenblaikner, E. Nugent and C. J. Foot, J. Phys. 
Condens. Matter, 14, 1021 (2002). 

13. C. Gies and D. A. W. Hutchinson, Phys. Rev., A70, 043606 (2004), 

14. D. J. Bishop and J. D. Reppy, Phys. Rev. Lett. (PRL), 92, 180631 (2004). 

15. J. M. Kosterlitz and D. J. Thouless, J. Phys., C 6, 1181 (1973). 

16. A. L. Safonow, S. A. Vasilyev, I. S. Yasnikov I. I. Lukashevich and S. Jaakkola, Phys. 
Rev. Lett. (PRL), 81, 4545 (1998). 

17. V. M. Perez-Garcia, H. Michinel, J. I. Cirac, M. Lewenstein and P. Zoller, Phys. Rev. 
Lett. (PRL), 77, 5320 (1996). 

18. S. Stringari, Phys. Rev. Lett. (PRL), 77, 2360 (1996). 

19. F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Rev. Mod. Phys., 71, 463 
(1999). 

20. Y. Castin and R. Dum, Phys. Rev. Lett. (PRL), 77, 5315 (1996). 

21. G. Hechenblaikner, N. L. Smith, C. J. Foot, W. Heathcote and E. Nugent, Phys. Rev., 
A71, 013064 (2004). 



 P. Kumar et al.: An Evaluation of Chemical Potential of…. 1540 

22. G. Hechenblaikner, J. M. Krueger and C. J. Foot, Phys. Rev., A72, 014604 (2005). 

23. G. Watanabe, S. Andrew, G. Baym and C. J. Pethick, Phys. Rev., A74, 063621 
(2006). 

24. S. R. Mishra, S. P. Ram and A. Banerge, Pramana –J. Phys., 68, 913 (2007). 

25. F. Malet, T. Kristensen, S. M. Reimann and G. M. Kavoulakin, Phys. Rev., A83, 
033628 (2011). 

 

Revised : 17.09.2012 Accepted : 20.09.2012 


