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ABSTRACT 

 An evaluation of the scattering length and effective range of an attractive square well potential 
for ultracold atomic gases were performed. Our theoretical results showed that for any potential with large 
positive scattering length has a bound state just below the continuum threshold of energy. The theoretically 
evaluated results are in good agreement with other theoretical workers. 
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INTRODUCTION 

After the experimental realization of Bose-Einstein condensation in trapped gases1,  
a great deal of experimental progress has been made in the field of ultra cold  atomic gases2-5. 
The particular reason for this progress is the unprecedented experimental control over the 
atomic gases of interest. This experimental control over the ultacold magnetically trapped 
alkali gases has also demonstrated the experimentally adjustable interaction between the 
atoms. This is achieved by means of Feshbach resonance6. The defining feature of a 
Feshbach resonance is that the bound state responsible for the resonance exists in another 
part of the quantum mechanical Hilbert space than the parts associated with the incoming 
particles. Here, the two incoming atoms in the open channel have a different hyperfine state 
than the bound state in the closed channel. The coupling between the open and closed 
channel is provided by the exchange interaction. As a result of this difference in the 
hyperfine state, the two channels have a different Zeeman shift in a magnetic field. 
Therefore, the energy difference between the closed-channel bound state and the two-atom 
continuum threshold, so-called detuning, is experimentally adjustable by tuning the 
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magnetic field. This implies that the s-wave scattering length and hence the magnitude and 
sign of the interatomic interactions is also adjustable to any desirable. 

With this experimental degree of freedom, it is possible to study very interesting new 
regimes in a many-body physics of ultacold atomic gases. The first experimental application 
was the detailed study of the collapse of a condensate with attractive interactions, 
corresponding to negative scattering lengths. In general, the collapse occurs when the 
attractive interactions overcome the stabilizing kinetic energy of the condensate atoms in the 
trap. Since the typical interaction energy is proportional to the density, there is a certain 
maximum number of atoms above which the condensate is unstable7-10. 

Mathematical formulae used in the evaluation 

One considers the situation of two atoms of mass m that interacts via a potential V(r) 
that vanishes at large distance between the atoms. The motion of the atoms separates into the 
trivial center-of mass motion and the relative motion, described by the wave function ψ(r) 
where r = x1-x2, and x1 and x2 are the coordinates of two atoms, respectively. The wave 
function is determined by the time independent Schrödinger equation- 

 (r) Eψ(r) ψ V(r)m
22

=⎥⎦
⎤

⎢⎣
⎡ +∇h  …(1) 

With E is the energy of the atoms in the center–of–mass system. Solutions of the 
Schrodinger equation with negative energy correspond to bound states of the potential i.e. to 
molecular states. To describe the atom-atom scattering one has to look for solution with 

positive energy E = 2εK with εK = 2m
k22h  the kinetic energy of single atom with momentum 

ħk. Since any realistic interatomic interaction potential vanishes rapidly as the distance 
between atoms becomes large, one knows that the solution for r → ∞ of equation (1) is 
given by a superposition of incoming and outgoing plane waves. The scattering wave 
function is given by incoming plane wave and outgoing spherical wave and reads as11-14. 

 Ψ(r) ~ eikr + f (k', k) r
eikr

 …(2) 

Where the function f(k’,k) is known as the scattering amplitude. Following the 
partial–wave method, one expands the scattering amplitude in Legendre polynomials 
according to – 

 f (k', k) = ∑
∞

=0 l
11 )θ( cos P r)(k, f  …(3) 
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Here θ is the angle between K and K’. One expands the incident wave in partial 
waves according to – 

 )θ( cos P 2
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The partial wave amplitude fl(k) has the form – 

 )k(e(ik2
)12()k(f iδ2 l

l

l
il +=  …(5) 

Where δl(k) is the phase shift of the lth partial wave. The low energy effective 
interactions between the atoms are fully determined by the s-wave scattering length defined 
by – 

 0 ( )lim 0 ka k
k

δ
= − →  …(6) 

The scattering length is determined by the linear dependence of the phase shift on 
the magnitude of the relative momentum Ћk of the scattering atoms for small momentum. 
Generally, the phase shift can be expanded according to – 

 2
0

1 1cot( ( ))
4 2 effk k r kδ = − + + − − − −  …(7) 

From which the scattering length is determined by – 

 

1
2 2

0
tan(1 ), [ ]a R R m Vγ γ
γ

= − = h  …(8) 

R is the range of the square well potential. γ is dimensionless constant. The 
parameter reff is the effective range and for square well potential is given by15 – 

 
2

2

2 tan (3 )[1 ]
3 ( tan)effr R γ γ γ
γ γ

− +
= +

−
  …(9) 

The equation for bound-state energy is given by – 

 0 02 2 2( ) cot( ( )m m
m m mE E V E V= − − −
h h h

 …(10) 
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Where V0 is the depth of the potential. The relation between the energy of the 
molecular state and scattering length is given by – 

 
2

2mE
ma

= −
h   …(11) 

This result does not depend on the specific details of the potential and it turns out to 
be quite general. The hyperfine interaction is given by – 

 2 .hf
hf

a
V I S=

h
 …(12) 

Here ahf is hyperfine constant. The hyperfine interaction has both singlet and triplet 
states. In the presence of magnetic field the different internal states of the atoms have a 
different Zeeman shift, in a experiment with magnetically trapped gases, energy difference 
between these states is therefore experimentally accessible. The magnetic field dependence 
of the scattering length near a Feshbach resonance is characterized by a width ΔB and 
position B0 according to16 – 

 
0

( ) (1 )bg
Ba B a

B B
Δ

= −
−

 …(13) 

This shows that the scattering length and magnitude of the effective interatomic 
interaction can be altered to any value by tuning the magnetic field. abg is the scattering 
length  at the Feshbach resonance17. 

RESULTS AND DISCUSSION 

 In this paper, we have studied Feshbach resonance in two-channel system with 
square well potential. Using the theoretical formalism of Ohashi and Griffin18, we have 
evaluated the scattering length for two coupled square well potential as a function of ΔμB. 
Δμ is the difference in the magnetic moment and B is the magnetic field. Using equation (8) 
and (9), we have evaluated the scattering length (a/R) and Effective range (reff/R) as a 

function of dimensionless parameter 0
2

m V
Rγ =

h
 for an attractive square well potential. 

Here R is the range of potential and V0 is the depth of potential. The results are shown in 
Table 1. From the results, one can see that the scattering length can be both positive and 
negative. This becomes equal to zero at values of γ such that γ = tan γ. It is also observed 
that the effective range diverges of the scattering length and becomes equal to zero. At 
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values of γ = (n + 1/2) π with n a positive integer, the scattering length diverges and changes 
sign. This behavior is called a potential or shape resonance and in fact occurs each time the 
potential is just deep enough to support a new bound state. Therefore for large and positive 
scattering length the square well has a bound state with an energy just below the continuum 
threshold. It turns out that there is an important relationship between the energy of the bound 
state and the scattering length. 

Table 1: Evaluated results of scattering length (a/R) and effective range (reff/R) for an 
attractive square well potential in the unit of range of potential R as a 

function of dimensionless parameter 0
2

m Vγ = R    

0
2

m Vγ = R  
Scattering length 

(a/R) 
Effective range 

(reff/R) 

0.0 0.0 12.6 
1.0 -0.05 10.8 
2.0 -0.24 8.7 
3.0 -0.45 5.2 
4.0 -0.10 3.2 
5.0 0.06 1.5 
6.0 0.17 0.25 
7.0 0.25 -0.28 
8.0 0.38 -0.36 
9.0 0.27 -0.50 

10.0 0.18 -0.10 
15.0 0.12 -0.04 

 The relation is 
2

2mE
ma

= −
h  where ‘a ‘is the scattering length. This result does not 

depend on the specific details of the potential and it turns out to be quite general. Any 
potential with large positive scattering length has a bound state just below the continuum 
threshold with energy given by Em. In Table 2, we have given the results of scattering of two 
square well potential as a function of ΔμB. The resonant behavior is due to the bound state 
of the single Vs(r). Now solving the equation (10) for the binding energy with V0 = - Vs, one 
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finds that 
2

2

4.62
mE

mR
=

h  which is approximately the position of the resonance. The 

difference is due to the fact that the hyperfine interaction leads to a shift in the position of 
the resonance with respect to Em.  

Table 2: Evaluated results of scattering length for two coupled square well potential as 
a function of ΔμB. The depth of triplet and singlet channels potentials is          

VT = 2

2

mR
h  and Vs = 2

2

mR
10h  respectively. The Hyperfine coupling is Vhf = 2

2

mR
0.1h  

⎟
⎠
⎞

⎜
⎝
⎛

2

2

mR

ΔμB
h

 
 (a / R) 

4.40 0.04 
4.45 0.16 
4.50 0.35 
4.55 0.65 
4.60 1.05 
4.65 -3.25 
4.70 -3.16 
4.75 -2.85 
4.80 -2.60 
4.85 -2.52 
4.90 -2.34 
4.95 -2.12 
5.00 -1.15 
5.50 -1.10 

The magnetic field dependence of the scattering length near a Feshbach resonance is 
characterized experimentally by a width ΔB and position B0 according to equation (13). This 
expression shows that the scattering length and therefore the magnitude of the effective 
interatomic intervals may be altered to any value by tuning the magnetic field. The off 
resonant behavior of scattering length is denoted by abg and is approximately equal to the 
scattering length of the triplet potential VT(r). Now, using the expression for the scattering 
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length of the square well potential from equation (8) for γ = 1, one finds that abg = 0.56R. 

One can also find the problem of the resonance and is equal to 
2

20
4.64B m Rμ=

Δ
h  and 

width is equal to = –
2

2
0.05

m RμΔ
h . In Table 3, we have presented the experimental results 

of scattering length as a function of magnetic field. Some recent19-25 results also reveal the 
same facts. 

Table 3: Evaluated results of scattering length as a function of magnetic field. The 
scattering length is normalized such that it is equal to one far off resonance. 

Magnetic field (G) Scattering length (abg) 

890 1.0 

895 2.45 

900 3.96 

905 5,82 

907 0.86 

909 0.98 

910 1.25 

912 1.86 

915 2.20 
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