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ABSTRACT 

In this paper, we have theoretically determined the vortex core size by taking Ginzburg-Landau 
parameter K = 1 for superconductor V3Si, NbSe2 and LuNi2B2C. We have used Eilenberger equations in 
our calculation. We have shown that vortex core size r0 and coherence length ξab exhibit magnetic field 
dependence. The maximum value of the cut off parameter ξab measured by μSR corresponds to the GL 
coherence length calculated from HC2. At low fields, where the vortices are weakly interacting, the fitted 
value of ξab agrees with expected from HC2. 
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INTRODUCTION 

Muon spin rotation (μSR) is an experimental technique primarily used to measure 
local magnetic fields inside samples. The discovery of high transition temperature (high- Tc) 
superconductivity in 1986 brought about a rapid world-wide expansion in the use and 
application of μSR. Since the μSR has been routinely applied to investigations of these and 
other newly discovered type-II superconductors. The technique allows for studies in zero 
external magnetic field, which combined with its sensitivity as a local probe has provided 
distinctive information on the occurrence of internal magnetism as a coexisting or competing 
these, or as a consequence of time μSR reversal symmetry breaking superconductivity. From 
zero field μSR studies of cuprates, a generic temperature versus doping phase diagram has 
been constructed, showing the coexistence of high –Tc superconductivity with static 
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magnetism in highly doped samples. Today there is still much debate on the origin of this 
magnetism and its importance to the high-Tc ‘problems’. 

The vortex state provides another avenue for investigation of type-II super-
conductors with μSR1. For many years such studies focused solely on obtaining 
experimental information to the magnetic penetration depth (λ), through measurements of 
the muon spin depolarization rate (σ) resulting from the broad internal magnetic field 
distribution n(B) of the flux-line lattice (FLL). The temperature and magnetic field 
dependences of λ, which in many systems can also be determined in the Meissner phase by 
other techniques, reflect the pairing state symmetry of the superconducting carriers. With 
further advances of the μSR method came the ability to focus attention on the properties of 
the vortex cores themselves. 

The first-ever study to account for the finite size of the vortex cores in the analysis of 
μSR data was an investigation of n(B) in pure Nb single crystal2. The measured field 
distributions were shown to be consistent with numerical solutions of the macroscopic BCS-
Gor’kov theory. Some years later, the magnetic field dependence of the vector core size was 
determined from μSR measurements on single crystal NdSe2

3. The results confirmed earlier 
scanning tunneling spectroscopy (STS) measurements on NdSe2 that showed a shrinking of 
the vortex cores with increasing magnetic field.4 This behavior could be attributed to an 
increased overlap of the quasi-particle states around a vortex core with those coming from 
neighboring vortices. However, these μSR studies were more than just another means of 
accessing information obtainable by another experimental technique. Instead they marked 
the development of a more powerful method for investigating some of the intrinsic 
properties of vortex cores in type-II superconductors. 

This STS technique, which is sensitive to the electronic structure of the vortex cores, 
is permitted to probing individual vortices near the sample surface. Near the surface the 
vortices spread out5,6 and their properties are strongly influenced by surface inhomogeneities 
and/or defects. Today, one can study vortices immediately above or below the surface by 
μSR using low-energy (several KeV) positively charged muons (μ*)6,7 or by β detected NMR 
using low-energy radioactive ions.8 In contrast, the experiments of2,3 used energetic (~3 meV) 
is that stop at interstitial or bond sites in the bulk of the sample where they directly probe the 
local magnetic field. The term ‘bulk’ means that the stopping range of these faster muons is 
approximately 150 mg cm-2 which requires samples ~ 1 mm thick. In further contrast to the 
STS method μSR studies yield average information on the vortex cores, using ~107μ+ to 
randomly probe the ~109 vortices in a typical size sample. 
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Since the expweiments3 of, strong field and temperature dependences of the vortex 
core size have been found by μSR in a variety of superconductors. Through comparison of 
the results with theoretical models and experiments that are directly sensitive to quasi-
particles properties, a good understanding of many of the μSR experiments has been 
achieved. In d-wave superconductors, it is now well established that the vortex core size 
depends on both the thermal occupancy of the bound quasi-particle core states and the 
overlap of the corresponding quasi-particle wave functions with those of nearest-neighbor 
vortices. However, in exotic systems such as high-Tc superconductors, where localized core 
states may be absent, there is currently insufficient experimental information to make similar 
definitive statements. On the other hand, recent μSR studies of the vortex cores in under 
doped high-Tc superconductors have shed new light on the ground state that emerges when 
superconductivity is suppressed. Combining information obtained from μSR experiments in 
zero and non-zero magnetic fields, the latest results support a picture of closely competing 
superconducting and magnetic ground states. 

Muon spin rotation (μSR) 

The primary use and strength of μSR is its unmatched sensitivity to internal 
magnetism. Central to the μSR method is the use of nearly 100% spin-polarized muon beam, 
naturally generated from the weak interaction decay of pions. This is a great advantage over 
conventional NMR, which relies on thermal equilibrium nuclear spin polarization in a large 
magnetic field. Zero fields (ZF) μSR is routinely used to study small internal magnetic fields 
of natural origin. In contrast to neutron scattering, the information provided by μSR is 
integrated over reciprocal pace, which makes it ideal for studies of short-range magnetic 
correlations or disordered magnetism. The magnetic moment of the muon is 3.18 times 
larger than that of proton, making it ever more sensitive to magnetism than NMR. Although 
generally a nuisance in experiments, μSR even detects the dipolar fields of nuclear moments. 
In fact, magnetic field is small as ~0.1G are detectable-although it is important to emphasize 
that is refers to the local field at the muon stopping site. 

Transverse field μSR 

The internal magnetic field distribution n(B) of a type-II superconductor in the 
vortex state is measured by the so-called ‘transverse-field’ muon spin rotation (TF- μSR) 
method. The external magnetic field H is applied transverse to the direction of the initial 
muon spin polarization Px (0), which defines the x-axis. In high-Tc superconductors, the 
positive (μ+) forms an ~1Ǻ bond with an oxygen atom9,10, but in general the muon will stop 
at an interstitial site in the sample. There the muon spin processes about the local magnetic 
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field B (r) in a plane perpendicular to the local field axis. The muon subsequently decays, 
emitting a fast position. The angular dependence of the decay probability of the muon is 
given by – 

                                         W (E,θ) = 1 + a (E) cos (θ)  …(1) 

Where E is the kinetic energy of the decay position, θ is the angle between the 
directions of the muon spin and the emitted position and a (E) is an asymmetry factor. When 
all positron energies are sampled with equal probability, the asymmetry factors has the value 
a = 1/3. The statistical average direction of the muon spin polarization is obtained by 
measuring the amasotropic angular distribution of decay positrons from an ensemble if 
implanted muons. 

The μSR signal obtained by the detection of the decay positrons is given by 

                                                   A(t) = a0Px(t)  …(2) 

Where A(t) is the μSR ‘asymmetry’ spectrum, a0 is the asymmetry maximum, and 
px(t) is the time evolution of the muon spin polarization 

                                    0

( ) ( ) cos( )xP t n B Bt dBμγ θ
∞

= +∫
 …(3) 

Here μγ = 0.0852 μS-1G-1 is the muon gyro magnetic ratio, θ is a phase constant and 

                                           [ ]'( ) ' ( )B B B rδ= −  …(4) 

is the probability of finding a local magnetic field B in the z-direction at a position r in the  
x-y plane. 

Ginzburg-Landau models 

In recent year, modified Landau models for B (r) have been abandoned in favour of 
models based on GL theory. The appealing aspect of the GL models is that the spatial 
variation of the order parameter is naturally built into the theory. The drawback is the GL 
theory assumes that the order parameter varies slowly in space and is strictly valid only near 
Tc. Despite these limitation, GL theory has proven to be highly successful in describing 
variations of n (B) as measured by μSR, yielding accurate quantitative values of λ and ξ in 
certain cases. As is the case in using modified Landau models, the key is to be careful with 
the interpretation of the fitted values. 
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The GL equations for the ideal Abrikosov vortex lattice can be solved by a 
variational method11. At low reduced field b = B/Bc2 << 1 and for κ  >>1, an excellent 
analytical approximation to the spatial field profile in GL theory is12 – 

                                     
.

4
0 2 2

( )( ) (1 )
iG r

G

e F GB r B b
Gλ

−

= − ∑  …(5) 

Where F (G) = uK1(u), u2 = 2 ξ2G2(1-b4) [1-2b(1-b)2] and K1 (u) is a modified Bessel 
function. Note the cutoff function F (G) depends on the local internal magnetic field B. 

Vortex core size 

Superconductivity is strongly suppressed in the vortex core. Vortex core size is that 
it is a region of radius r ξ where ξ  is the coherence length. It is the length scale for spatial 
variation of the order parameter ψ which is the GL coherence length. The core radius is 
defined as – 

                                             0
1 ( )lim rr

r

ξ Δ
=

Δ
→

 …(6) 

Where 0
0

1
ξ

Δ = is the bulk superconducting energy gap at zero temperature and 0ξ  

is BCS coherence length abξ is given by – 

                                                 
2
1

2

0
2 ⎟

⎠
⎞⎜

⎝
⎛= πHcab

ξ φ  …(7) 

where 0φ is flux quanta and Hc2 is the upper critical field.  

RESULTS AND DISCUSSION 

In this paper, we have theoretically evaluated the magnetic field dependence of the 
vortex core size ‘r0’ (Ǻ) coherence length ξab (Ǻ) of superconductor V3Si, NbSe2 and 
LuNi2B2C. These parameters have been determined from muon spin rotation measurements. 
The coherence length ξab has been determined from Ginzburg-Landau model. The equation 
for the ideal Abrilosov vortex lattice have been solved by a variational method. Magnetic 
field dependence of the vortex core size and coherence length are determined by taking κ  
>> 1. κ  is the GL parameter. The results for r0 (Ǻ) and ξab (Ǻ) are shown in Table 1 and 2 
with experimental data15-17. 
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Table 1: An Evaluated results of magnetic field dependence of Vortex core size for 
superconductor V3Si, NbSe2 and LuNi2B2C 

r0 (Ǻ) 

V3Si (T = 0.22 Tc) NbSe2 (T = 0.03 Tc) LuNi2B2C (T = 0.16 Tc)
2

H
Hc

 

Theo. Expt.15 Theo. Expt. 16 Theo. Expt. 17 

0.05 60.25 59.16 152.48 157.24 186.54 188.38 

0.07 58.46 55.42 150.77 155.58 182.25 185.86 

0.10 54.72 53.58 146.56 150.06 178.43 180.58 

0.15 50.12 49.10 140.18 144.28 174.22 178.22 

0.20 43.55 41.86 13.26 135.48 164.86 166.12 

0.22 40.18 39.17 127.98 130.04 160.25 162.48 

0.24 37.10 36.48 122.50 125.18 154.15 159.25 

0.26 35.26 30.59 117.84 120.52 150.46 155.56 

0.28 31.87 28.22 112.52 114.05 143.86 150.41 

0.30 28.55 26.06 102.59 104.86 140.78 144.59 

0.35 26.18 24.21 98.23 100.22 136.26 139.12 

0.40 22.28 20.53 95.16 95.84 131.53 134.28 

Table 2: An Evaluated results of magnetic field dependence of coherence length ξab (Ǻ) 
for superconductor V3Si, NbSe2 and LuNi2B2C 

abξ  (Ǻ) 

V3Si (T = 0.22 Tc) NbSe2 (T = 0.03 Tc) LuNi2B2C (T = 0.16 Tc)
2

H
Hc

 

Theo. Expt.15 Theo. Expt. 16 Theo. Expt. 17 

0.05 42.14 45.58 105.29 108.06 84.22 89.97 

0.07 40.22 42.27 103.58 106.53 80.39 85.26 

0.10 38.29 40.54 100.07 102.46 76.46 81.38 

0.15 36.84 38.86 97.39 99.55 72.29 78.54 

Cont… 
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abξ  (Ǻ) 

V3Si (T = 0.22 Tc) NbSe2 (T = 0.03 Tc) LuNi2B2C (T = 0.16 Tc)
2

H
Hc

 

Theo. Expt.15 Theo. Expt. 16 Theo. Expt. 17 

0.18 34.55 35.59 94.58 96.68 68.55 74.22 

0.20 30.27 31.44 91.22 94.22 62.34 70.16 

0.22 28.17 30.05 87.48 90.18 58.26 65.55 

0.24 26.22 28.29 81.95 85.55 53.58 60.28 

0.26 24.53 27.09 76.42 80.29 50.22 55.48 

0.28 21.86 24.66 73.54 75.16 47.59 52.22 

0.30 18.47 20.14 69.42 71.22 41.22 49.58 

0.35 15.38 18.36 61.55 68.29 38.16 41.33 

0.40 12.24 15.46 55.29 61.86 32.25 38.29 
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