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ABSTRACT 

Tkachenko mode is a transverse sound wave in a vortex lattice, which exists in the ground state 
of a rotating super fluid. It has attracted a lot of attention in vortex dynamics of laboratory and 
astrophysical super fluids. Observation of this extremely soft mode (of order or less than a few Hz) in 
laboratory super fluids was very difficult because even slight pinning of vortex ends the Tkachenko wave 
into a classical inertial wave. This mode is a direct manifestation of the quantum vortices since it depends 
on the circulation quantum. Tkachenko mode in rotating BEC was investigated numerically with solving 
the equations of Gross-Pitaevskii theory, but the numerical results do not agree with the experiment. 

In the present paper, it has been shown that the continuum theory of Tkachenko modes, taking 
into account density, inhomogenity and compressibility of the condensate, successfully explained the 
observed experimental data. 

Key words: Tkachenko mode, Super fluid, Bose-Einstein condensate, Circulation quantum, Gross-
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INTRODUCTION 

Tkachenko mode1 is a transverse sound wave in a vortex lattice, which exists in the 
ground state of a rotating super fluid. It has attracted a lot of attention in vortex dynamics of 
vortex dynamics of laboratory and astrophysical superfluids2. Observation of this extremely 
soft mode (of order or less than a few Hz) in laboratory super fluids was very difficult 
because even slight pinning of vortex ends shades the contribution of vortex shear rigidity 
transforming the Tkachenko wave into a classical inertial wave3. However, discovery of the 
Bose-Einstein condensate (BEC) and the possibility to rapidly rotate it made observation of 
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Tkachenko modes more feasible, which resulted in clear experimental detection of them4. As 
well as the Kelvin mode, also possible in the BEC5, the Tkachenko mode is a direct 
manifestation of the quantum vortices since it depends on the circulation quantum. 

In a number of aspects, external conditions for Tkachenko waves in BEC are 
essentially different from those in ‘old’ super fluid. First, in a rapidly rotating BEC, one 
cannot consider a super fluid to be incompressible. The effect of finite compressibility was 
investigated theoretically in the past3, since the effect is crucial for the ling-wavelength limit 
of the Tkachenko mode. But at that time, it was considered as a theoretical curiosity since in 
order to reveal it, one needed containers about a few hundred meters in diameter. In the BEC 
case, the situation is essentially different because in contrast to a strongly interacting Bose 
liquid such as He II, BEC is a weakly interacting Bose gas with very low sound speed and 
very high compressibility. The importance of high liquid compressibility for Tkachenko 
wave in BEC was pointed out by Baym6, who red rived the spectrum of Tkachenko waves in 
a compressible liquid7 known from Ref. 3 and compared it with the experiment4. Another 
importance feature of rotating BEC, also connected with its high compressibility, is that the 
liquid density is essentially inhomogeneous. This feature was taken into account in the 
theory by Anglin and Crescimahno8, which the frame of the continuum theory, which 
replaces a discrete vortex lattice by a continuous medium, like the elasticity theory for 
atomic crystals. But they neglected liquid compressibility, while a proper comparison with 
the experiment requires a theory taking into account both features, compressibility and in 
homogeneity. Recently, the Tkachenko mode in rotating BEC was investigated numerically 
with solving the equations of Gross-Pitaevskii theory (mean-field theory)9,10.  The numerical 
results agreed well with the experiment. It would be also useful to develop an analytical 
approach since it could provide a deeper insight into physics of the phenomenon. In the 
experiment, there are good conditions for application of a continuum theory since usually 
the relevant length scale (the condensate size) essentially exceeded the inter vortex distance. 
The goal of the present paper is to suggest the continuum theory of Tkachenko modes in a 
rapidly rotating BEC taking into account liquid compressibility and inhomogeneity. The main 
challenge for the theory was to formulate proper boundary conditions for oscillating BEC. 

Mathematical formulae used in the evaluation 

One considers equations of motion of homogeneous compressible super fluid at       
T = 0 (no normal component) in the rotating coordinate frame3 - 
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Here )(rρ′ is the oscillating component of the liquid mass density )(r ρ = )(rρρo ′+  

around the equilibrium homogeneous density 0ρ , u is the vortex displacement, L
duV
dt

= is the 

vortex velocity, V is the liquid velocity averaged over the vortex-lattice cell, Ω is the angular 
velocity, Cs is the sound velocity, κ = h/m is the circulation quantum and CT=

1
2( )

8TC κ
π
Ω

=  is 

the Tkachenko-wave velocity. Assuming that CT<<CS and CTκ << Ω, one receives for the 
spectrum of plane wave exp( . )i r i tκ ω∝ − the dispersion relation 
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which yields the gaped sound mode 
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and the soft quantum mode (Ref. 11 and 13) 
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So, for the Tkachenko mode, compressibility is essential in the long-wavelength 
limit κ << Ω /Cs. It transforms the Tkachenko wave with the sound spectrum ω = CTκ to a 
softer mode ω ∝ κ2. In the Tkachenko mode motion of both the vortex lattice and the liquid 
has an elliptic polarization but longitudinal components parallel to the wave vector κ are 
very small. The transverse components (normal to κ) of the vortex lattice and the liquid are 
close to one another; VLt = Vr. 

Generalization of these equations onto an inhomogeneous liquid with equilibrium 
density ρ0(r), which varies in the plane normal to the rotation axis, is straight forward. In 
particular, one should replace ρ0∇.V in Eq. (1) by ∇. [ρ0(r)V]. The goal of this paper is to 
consider only axis symmetric Tkachenko eigen modes in an axis symmetric rotating BEC. 
Thus, one writes the equations of motion in the polar system of coordinates for the 
nomochromatic mode ∝-iωt.  
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One excluded all variables except for the tangential (azimuthal in polar coordinates) 
component of the velocity Vt = VLt and the radial component of the liquid velocity Vr is 
crucial for the compressibility effect. For a weakly interacting Bose gas, 2

sC  is proportional 

to the density ρ0. Therefore, the ratio 2 /s oC ρ can be replaced by its value ( ) ( )2
00 / 0sC ρ in the 

BEC centre r = 0. 

Let us discuss first the results for Tkachenko eigenmodes in an incompressible      
(Cs → ∞) homogeneous (ρ0 = const.) liquid in a cylindrical container. Then the radial liquid a 
velocity Vr vanishes and Eq. (7) is the Bessel equation with a solution Vt ∝ Jl (κr). The eigen 
values of the wave number κ are determined from the boundary condition at r = R, where R 
is the radius of the vortex-lattice sample, which is normally close to the container radius. In 
the ideal axis symmetric case without any interaction of vortices with lateral walls the radial 
flux of the azimuthal component of the momentum, which is given by the corresponding 
component of the vortex-lattice stress tensor, must vanish. This gives the boundary 
condition3. 

 
( )( ) ( ) 1 [ ] 0t tdV V Rdu R u R

dr R i dr Rω
− = − − =   …(9) 

The flux of the angular moment into the liquid is proportional to the same stress-
tensor component and therefore vanishes also. Equation (9) leads to the condition J2 (κR) = 0 

imposed on the wave number κ. Traditionally, in the papers on BEC, they scale the 
Tkachenko mode frequencies by the frequency Ωb / R, where 

3
b κ=

Ω
is the inter vortex 

distance4,8,10. 
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Then the first two roots κR = 5.14 and 8.42 of the equation J2 (κR) = 0 give the first 

two reduced eigen frequencies of the Tkachenko mode kR kR 263.0~
8

3 =πω  with the ratio 
8.42/5.14 = 1.64. Another interesting case is the limit of the strong interaction of vortices 



 J. P. Sinha and L. K. Mishra: A Study of Continuum Theory of…. 1716 

with rough lateral walls with Vt (R) = 0. Then the eigen frequencies are given by the first two 
roots of the equation J1 (κR) = 0κR = 3.83 and 7.02 with the ratio of the two lowest eigen 
frequencies 7.02/3.83 = 1.83. 

RESULTS AND DISCUSSION 

In this paper, we have studied the continuum theory of Tkachenko modes in a 
rotating two-dimensional Bose-Einstein condensates. We have taken the theoretical 
formalism of Sonies11, who has taken into account the density, inhomogeneity and 
compressibility of the condensate. The theory is based on the solution of the coupled 
hydrodynamic equation of vortex and liquid motion with proper boundary conditions. These 
boundry conditions for the condensate have been obtained using Thomas-Fermi 
approximation12. We have computed the eigen frequency ω1

~  as a function of 
2 2/ / 2 2t sωΩ −Ω = . The results are shown in Table 1.  

Table 1: An Evaluated results of eigen frequency ω1
~  as a function of / 2 2.s  where 

.
2Ω2(ω

2Ω2s
−⊥

=  Ω is the angular velocity of rotation. Theoretical results were 

compared with the experimental datas. ω⊥ is the trap frequency, b is the inter 
vortex displacement, R is the BEC border, r = R 
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Theo Expt. 
1.0 1.427 - 
1.5 1.395 - 
2.0 1.374 1.245 
2.5 1.372 1.206 
3.0 1.356 1.168 
3.5 1.289 1.138 
4.0 1.165 1.105 
4.5 1.105 0.953 
5.0 0.985 0.886 
5.5 0.856 0.754 
6.0 0.683 0.652 
7.0 0.605 0.626 
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The theoretical results were compared with the experimental data. Qualitative 
agreement between the theory and the experiment looks quite good. However, the 
disagreement is well the numerical data. It becomes worse at large s. However, this 
disagreement is not connected with the growth of s itself, which accompanies the growth of 
s in accordance with the ξ/b. One believes that better agreement with larger ‘s’ can be 
obtained, if the experiments are performed with larger number of atoms13,14.  Conddington et 
al.15 measured the ratio of the two first frequencies, which corresponds15,16 to s = 8.61. The 
present theory predicts the ratio ω2/ω1 = 2.09. Some recent calculations17-20 also reveal the 
same facts. 

CONCLUSION 

The continuum theory of Tkachenko modes was developed, which takes into account 
the liquid inhomogeneity and finite compressibility. When this theory was applied to rapidly 
rotating BEC with proper boundary conditions, the theory is found in good agreement with 
the observation of Tkachenko modes. 
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